DISCOVERING STATISTICS USING R

ANDY FIELD | JEREMY MILES | ZOË FIELD

Los Angeles | London | New Delhi Singapore | Washington DC

CONTENTS

Pre	face		xxi		
Ho	How to use this book				
Acł	nowled	Igements	xxix		
Deo	Dedication				
Syr	nbols u	sed in this book	xxxii		
Sor	ne mat	hs revision	xxxiv		
1	Why is my evil lecturer forcing me to learn statistics?				
	1.1.	What will this chapter tell me? 1	1		
	1.2.	What the hell am I doing here? I don't belong here \oplus	2		
	1.3.	Initial observation: finding something that needs explaining $oldsymbol{0}$	4		
	1.4.	Generating theories and testing them \bigcirc	4		
	1.5.	Data collection 1: what to measure \bigcirc	7		
		1.5.1. Variables ①	7		
		1.5.2. Measurement error ①	11		
		1.5.3. Validity and reliability ①	12		
	1.6.	Data collection 2: how to measure ①	13		
		1.6.1. Correlational research methods (1)	13		
		1.6.2. Experimental research methods (1)	13		
	4 7	1.6.3. Randomization (1)	1/		
	1.7.	Analysing data U	19		
		1.7.1. Frequency distributions ()	19		
		1.7.2. The dispersion is a distribution \oplus	21		
		1.7.3. The dispersion in a distribution to go beyond the data \bigcirc	24 25		
		1.7.5 Fitting statistical models to the data (1)	20		
		What have I discovered about statistics?	29		
		Key terms that I've discovered	29		
		Smart Alex's tasks	30		
		Further reading	31		
		Interesting real research	31		
2	Ever	rything you ever wanted to know about statistics			
	(well, sort of)				
	2.1.	What will this chapter tell me? 1	32		
	2.2.	Building statistical models 🛈	33		

	2.3.	Populat	ions and samples \bigcirc	36		
	2.4.	Simple	statistical models 🛈	36		
		2.4.1.	The mean: a very simple statistical model \bigcirc	36		
		2.4.2.	Assessing the fit of the mean: sums of squares, variance			
			and standard deviations ①	37		
		2.4.3.	Expressing the mean as a model $\textcircled{2}$	40		
	2.5.	Going b	beyond the data \bigcirc	41		
		2.5.1.	The standard error ①	42		
		2.5.2.	Confidence intervals ②	43		
	2.6.	Using s	tatistical models to test research questions (1)	49		
		2.6.1.	Test statistics ①	53		
		2.6.2.	One- and two-tailed tests (1)	55		
		2.6.3.	lype I and lype II errors (1)	56		
		2.6.4.		57		
		2.6.5.	Statistical power (2)	58		
		What ha	ave I discovered about statistics?	59		
		Key terr	ns that I ve discovered	60		
		Smart A	NEX S TASKS	60		
		Further	reading	60		
		Interest	ing real research	01		
3	The R environment					
	3.1.	What w	ill this chapter tell me? ①	62		
	3.2.	Before	vou start ①	63		
		3.2.1.	, The R-chitecture ①	63		
		3.2.2.	Pros and cons of R \bigcirc	64		
		3.2.3.	Downloading and installing R \oplus	65		
		3.2.4.	Versions of R 1	66		
	3.3.	Getting	started ①	66		
		3.3.1.	The main windows in R \oplus	67		
		3.3.2.	Menus in R 🛈	67		
	3.4.	Using F	10	71		
		3.4.1.	Commands, objects and functions ①	71		
		3.4.2.	Using scripts 1	75		
		3.4.3.	The R workspace ①	76		
		3.4.4.	Setting a working directory 2	77		
		3.4.5.	Installing packages ①	78		
		3.4.6.	Getting help ①	80		
	3.5.	Getting	data into R 1	81		
		3.5.1.	Creating variables ①	81		
		3.5.2.	Creating dataframes ①	81		
		3.5.3.	Calculating new variables from exisiting ones ①	83		
		3.5.4.	Organizing your data (1)	85		
		3.5.5.	Missing values (1)	92		
	3.6.	Entering	g data with R Commander ①	92		
		3.6.1.	Creating variables and entering data with R Commander (1)	94		
	0 -	3.6.2.	Creating coding variables with H Commander (1)	95		
	3.7.	Using o	Inter software to enter and edit data (1)	95		
		3.7.1.	Importing data U	97		
		3.7.2.	Importing SPSS data files directly 🛈	99		

	3.7.3.	Importing data with R Commander 🛈	101
	3.7.4.	Things that can go wrong 🛈	102
3.8.	Saving	data 🛈	103
3.9.	Manipu	lating data ③	103
	3.9.1.	Selecting parts of a dataframe ②	103
	3.9.2.	Selecting data with the subset() function ②	105
	3.9.3.	Dataframes and matrices 2	106
	3.9.4.	Reshaping data ③	107
	What ha	113	
	R packa	113	
	R functi	113	
	Key terr	114	
	Smart A	114	
	Further	reading	115

4 Exploring data with graphs

116

4.1.	What wi	116	
4.2.	The art	of presenting data 🛈	117
	4.2.1.	Why do we need graphs ①	117
	4.2.2.	What makes a good graph? $\textcircled{0}$	117
	4.2.3.	Lies, damned lies, and \ldots erm \ldots graphs $\textcircled{0}$	120
4.3.	Packag	es used in this chapter $\textcircled{0}$	121
4.4.	Introduc	cing ggplot2 ①	121
	4.4.1.	The anatomy of a plot \oplus	121
	4.3.2.	Geometric objects (geoms) 🛈	123
	4.4.3.	Aesthetics ①	125
	4.4.4.	The anatomy of the ggplot() function ${f 0}$	127
	4.4.5.	Stats and geoms ③	128
	4.4.6.	Avoiding overplotting 2	130
	4.4.7.	Saving graphs ①	131
	4.4.8.	Putting it all together: a quick tutorial 2	132
4.5.	Graphir	ng relationships: the scatterplot ①	136
	4.5.1.	Simple scatterplot ①	136
	4.5.2.	Adding a funky line ①	138
	4.5.3.	Grouped scatterplot ①	140
4.6.	Histogra	ams: a good way to spot obvious problems \oplus	142
4.7.	Boxplot	s (box–whisker diagrams) 🛈	144
4.8.	Density	plots ①	148
4.9.	Graphir	ng means ③	149
	4.9.1.	Bar charts and error bars 🖉	149
	4.9.2.	Line graphs 🕗	155
4.10.	Themes	s and options ①	161
	What ha	ave I discovered about statistics? 1	163
	R packa	ages used in this chapter	163
	R functi	ons used in this chapter	164
	Key terr	ms that I've discovered	164
	Smart A	Alex's tasks	164
	Further	reading	164
	Interest	ing real research	165

5 Exploring assumptions 5.1. What will this chapter tell me? ① 5.2. What are assumptions? ① 5.3. Assumptions of parametric data ① 5.4. Packages used in this chapter ①

5.5.	The ass	sumption of normality $①$	169		
	5.5.1.	Oh no, it's that pesky frequency distribution again:			
		checking normality visually $\textcircled{0}$	169		
	5.5.2.	Quantifying normality with numbers ①	173		
	5.5.3.	Exploring groups of data ①	177		
5.6.	Testing	whether a distribution is normal \bigcirc	182		
	5.6.1.	Doing the Shapiro–Wilk test in R \oplus	182		
	5.6.2.	Reporting the Shapiro–Wilk test \bigcirc	185		
5.7.	Testing	for homogeneity of variance ①	185		
	5.7.1.	Levene's test ①	186		
	5.7.2.	Reporting Levene's test 🛈	188		
	5.7.3.	Hartley's F_{max} : the variance ratio ①	189		
5.8.	Correct	ing problems in the data 2	190		
	5.8.1.	Dealing with outliers 2	190		
	5.8.2.	Dealing with non-normality and unequal variances $@$	191		
	5.8.3.	Transforming the data using R ${}^{\textcircled{0}}$	194		
	5.8.4.	When it all goes horribly wrong ③	201		
	What have I discovered about statistics? ()				
	R packages used in this chapter				
	R functi	R functions used in this chapter			
	Key terr	ms that I've discovered	204		
	Smart A	Alex's tasks	204		
	Further	reading	204		

6 Correlation

6.1.	What wi	ill this chapter tell me? ①	205
6.2.	Looking	at relationships 🛈	206
6.3.	How do	we measure relationships? ①	206
	6.3.1.	A detour into the murky world of covariance \oplus	206
	6.3.2.	Standardization and the correlation coefficient \oplus	208
	6.3.3.	The significance of the correlation coefficient ③	210
	6.3.4.	Confidence intervals for r 3	211
	6.3.5.	A word of warning about interpretation: causality \oplus	212
6.4.	Data en	try for correlation analysis \oplus	213
6.5.	Bivariate	e correlation ①	213
	6.5.1.	Packages for correlation analysis in R \oplus	214
	6.5.2.	General procedure for correlations using R Commander ①	214
	6.5.3.	General procedure for correlations using R \oplus	216
	6.5.4.	Pearson's correlation coefficient ①	219
	6.5.5.	Spearman's correlation coefficient ①	223
	6.5.6.	Kendall's tau (non-parametric) 🛈	225
	6.5.7.	Bootstrapping correlations ③	226
	6.5.8.	Biserial and point-biserial correlations ③	229

6.6.	Partial co	prrelation ②	234		
	6.6.1.	The theory behind part and partial correlation 2	234		
	6.6.2.	Partial correlation using R 2	235		
	6.6.3	Semi-partial (or part) correlations 2	237		
6.7.	Compari	ng correlations ③	238		
	6.7.1.	Comparing independent <i>rs</i> ③	238		
	6.7.2.	Comparing dependent rs ③	239		
6.8.	Calculati	ng the effect size 🛈	240		
6.9.	How to re	eport correlation coefficents ①	240		
	What hav	ve I discovered about statistics? $①$	242		
	R packag	ges used in this chapter	243		
	R functio	ns used in this chapter	243		
	Key terms that I've discovered				
	Smart Alex's tasks ①				
	Further reading				
	Interestin	ng real research	244		

7 Regression

245

7.1.	What wil	I this chapter tell me? $①$	245
7.2.	An intro	duction to regression ①	246
	7.2.1.	Some important information about straight lines ①	247
	7.2.2.	The method of least squares ①	248
	7.2.3.	Assessing the goodness of fit: sums of squares, R and R^2 ①	249
	7.2.4.	Assessing individual predictors ①	252
7.3.	Package	es used in this chapter ①	253
7.4.	General	procedure for regression in R ①	254
	7.4.1.	Doing simple regression using R Commander ①	254
	7.4.2.	Regression in R 1	255
7.5.	Interpret	ing a simple regression ①	257
	7.5.1.	Overall fit of the object model $\textcircled{0}$	258
	7.5.2.	Model parameters ①	259
	7.5.3.	Using the model ①	260
7.6.	Multiple	regression: the basics 2	261
	7.6.1.	An example of a multiple regression model ②	261
	7.6.2.	Sums of squares, R and R^2 ②	262
	7.6.3.	Parsimony-adjusted measures of fit ②	263
	7.6.4.	Methods of regression 2	263
7.7.	How acc	curate is my regression model? ②	266
	7.7.1.	Assessing the regression model I: diagnostics ②	266
	7.7.2.	Assessing the regression model II: generalization ②	271
7.8.	How to a	do multiple regression using R Commander and R 2	276
	7.8.1.	Some things to think about before the analysis ${\oslash}$	276
	7.8.2.	Multiple regression: running the basic model ②	277
	7.8.3.	Interpreting the basic multiple regression ②	280
	7.8.4.	Comparing models 🛛	284
7.9.	Testing t	he accuracy of your regression model ②	287
	7.9.1.	Diagnostic tests using R Commander 2	287
	7.9.2.	Outliers and influential cases 2	288

336

338

341

341

342

343

344

346

347

350

	7.9.3.	Assessing the assumption of independence ②	291
	7.9.4.	Assessing the assumption of no multicollinearity ②	292
	7.9.5.	Checking assumptions about the residuals ②	294
	7.9.6.	What if I violate an assumption? ②	298
7.10.	Robust	regression: bootstrapping 3	298
7.11.	How to	report multiple regression ②	301
7.12.	Categor	ical predictors and multiple regression ③	302
	7.12.1.	Dummy coding ③	302
	7.12.2.	Regression with dummy variables ③	305
	What ha	we I discovered about statistics? $①$	308
	R packa	ages used in this chapter	309
	R function	ons used in this chapter	309
	Key tern	ns that I've discovered	309
	Smart A	lex's tasks	310
	Further	reading	311
	Interesti	ng real research	311
Logis	stic regr	ression	312
8.1.	What wi	II this chapter tell me? ①	312
8.2	Backord	nund to logistic regression (1)	313
8.3.	What ar	e the principles behind logistic regression? (3)	313
	8.3.1.	Assessing the model: the log-likelihood statistic (3)	315
	8.3.2.	Assessing the model: the deviance statistic ③	316
	8.3.3.	Assessing the model: R and R^2 (3)	316
	8.3.4.	Assessing the model: information criteria 3	318
	8.3.5.	Assessing the contribution of predictors: the z-statistic @	318
	8.3.6.	The odds ratio 3	319
	8.3.7.	Methods of logistic regression ②	320
8.4.	Assump	tions and things that can go wrong ④	321
	8.4.1.	Assumptions @	321
	8.4.2.	Incomplete information from the predictors ④	322
	8.4.3.	Complete separation ④	323
8.5.	Package	es used in this chapter ①	325
8.6.	Binary lo	ogistic regression: an example that will make you feel eel ②	325
	8.6.1.	Preparing the data	326
	8.6.2.	The main logistic regression analysis ②	327
	8.6.3.	Basic logistic regression analysis using R 2	329
	8.6.4.	Interpreting a basic logistic regression @	330

.....

8

8.6.5.

8.6.6.

8.6.7.

8.6.8.

8.8.1.

8.8.2.

8.9.1.

8.9.2.

8.7.

8.8.

8.9.

Model 1: Intervention only 2

Calculating the effect size 2

Testing for multicollinearity ③

Testing for linearity of the logit ③

How to report logistic regression @

Testing assumptions: another example (2)

Model 2: Intervention and Duration as predictors 2

Casewise diagnostics in logistic regression 2

Predicting several categories: multinomial logistic regression ③

Running multinomial logistic regression in R ③

Interpreting the multinomial logistic regression output (3)

8.9.3. Reporting the results	355
What have I discovered about statistics? 1	355
R packages used in this chapter	356
R functions used in this chapter	356
Key terms that I've discovered	356
Smart Alex's tasks	357
Further reading	358
Interesting real research	358

9 Comparing two means

359

	9.1.	What wil	l this chapter tell me? ①	359
	9.2.	Package	es used in this chapter \bigcirc	360
	9.3.	Looking	at differences ①	360
		9.3.1.	A problem with error bar graphs of repeated-measures designs	1 361
		9.3.2.	Step 1: calculate the mean for each participant 2	364
		9.3.3.	Step 2: calculate the grand mean 2	364
		9.3.4.	Step 3: calculate the adjustment factor 2	364
		9.3.5.	Step 4: create adjusted values for each variable ②	365
	9.4.	The t-tes	st ①	368
		9.4.1.	Rationale for the <i>t</i> -test $①$	369
		9.4.2.	The <i>t</i> -test as a general linear model $②$	370
		9.4.3.	Assumptions of the <i>t</i> -test ①	372
	9.5.	The inde	ependent t-test ()	372
		9.5.1.	The independent <i>t</i> -test equation explained \bigcirc	372
		9.5.2.	Doing the independent <i>t</i> -test ①	375
	9.6.	The dep	endent t-test ()	386
		9.6.1.	Sampling distributions and the standard error \oplus	386
		9.6.2.	The dependent <i>t</i> -test equation explained $①$	387
		9.6.3.	Dependent t-tests using R ①	388
	9.7.	Between	0 groups or repeated measures? \bigcirc	394
		What ha	ve I discovered about statistics? \bigcirc	395
		R packa	ges used in this chapter	396
		R functio	ons used in this chapter	396
		Key term	ns that I've discovered	396
		Smart Al	ex's tasks	396
		Further r	eading	397
		Interestir	ng real research	397
10	Comp	paring s	everal means: ANOVA (GLM 1)	398
	10.1.	What wil	I this chapter tell me? ①	398
	10.2.	The theo	ory behind ANOVA 🖉	399
		10.2.1	Inflated error rates ②	399
		10.2.2.	Interpreting F@	400
		10.2.3.	ANOVA as regression (2)	400
		10.2.4.	Logic of the F-ratio 2	405
		10.2.5.	Total sum of squares (SS $_{\scriptscriptstyle T}$) ②	407
		10.2.6.	Model sum of squares (SS _M) $\textcircled{2}$	409
		10.2.7.	Residual sum of squares (SS _R) $\textcircled{0}$	410
		10.2.8.	Mean squares 🛛	411

		10.2.9. The F-ratio 2	411
	10.3.	Assumptions of ANOVA ③	412
		10.3.1. Homogeneity of variance 2	412
		10.3.2. Is ANOVA robust? 3	412
	10.4.	Planned contrasts 2	414
		10.4.1. Choosing which contrasts to do 2	415
		10.4.2. Defining contrasts using weights ②	419
		10.4.3. Non-orthogonal comparisons ②	425
		10.4.4. Standard contrasts 2	426
		10.4.5. Polynomial contrasts: trend analysis 2	427
	10.5.	Post hoc procedures ②	428
		10.5.1. Post hoc procedures and Type I (α) and Type II error rates (2)	431
		10.5.2. Post hoc procedures and violations of test assumptions @	431
		10.5.3. Summary of post hoc procedures ②	432
	10.6.	One-way ANOVA using R 🕲	432
		10.6.1. Packages for one-way ANOVA in R 1	433
		10.6.2. General procedure for one-way ANOVA ()	433
		10.6.3. Entering data 1	433
		10.6.4. One-way ANOVA using R Commander 2	434
		10.6.5. Exploring the data 2	436
		10.6.6. The main analysis 🕲	438
		10.6.7. Planned contrasts using R 2	443
		10.6.8. Post hoc tests using R 2	447
	10.7.	Calculating the effect size ②	454
	10.8.	Reporting results from one-way independent ANOVA (2)	457
		What have I discovered about statistics? ①	458
		R packages used in this chapter	459
		R functions used in this chapter	459
		Key terms that I've discovered	459
		Smart Alex's tasks	459
		Further reading	461
		Interesting real research	461
11	Anal	ysis of covariance, ANCOVA (GLM 2)	462
	11.1.	What will this chapter tell me? ②	462
	11.2.	What is ANCOVA? 2	463
	11.3.	Assumptions and issues in ANCOVA (3)	464

_ V ! !	

.....

11.3. Assumptions and issues in ANCOVA ③ 11.3.1. Independence of the covariate and treatment effect ③

	11.3.2.	Homogeneity of regression slopes ③	466
11.4.	ANCOVA	using R 🖉	467
	11.4.1.	Packages for ANCOVA in R ①	467
	11.4.2.	General procedure for ANCOVA ①	468
	11.4.3.	Entering data 🛈	468
	11.4.4.	ANCOVA using R Commander 2	471
	11.4.5.	Exploring the data 🛛	471
	11.4.6.	Are the predictor variable and covariate independent? 2	473
	11.4.7.	Fitting an ANCOVA model 2	473
	11.4.8.	Interpreting the main ANCOVA model 2	477

	11.4.9.	Planned contrasts in ANCOVA 2	479
	11.4.10.	Interpreting the covariate 2	480
	11.4.11.	Post hoc tests in ANCOVA 2	481
	11.4.12.	Plots in ANCOVA 2	482
	11.4.13.	Some final remarks ②	482
	11.4.14.	Testing for homogeneity of regression slopes ③	483
11.5.	Robust A	NCOVA 3	484
11.6.	Calculatir	ng the effect size 🖉	491
11.7.	Reporting	494	
	What hav	e I discovered about statistics? 1	495
	R packag	ges used in this chapter	495
	R function	ns used in this chapter	496
	Key term	s that I've discovered	496
	Smart Ale	ex's tasks	496
	Further re	eading	497
	Interestin	g real research	497
Facto	orial ANC	DVA (GLM 3)	498
12.1.	What will	this chapter tell me? ②	498
100			

		xiii

••••••

. acti			100
12.1.	What will	498	
12.2.	Theory o	f factorial ANOVA (independent design) 📀	499
	12.2.1.	Factorial designs 🕲	499
12.3.	Factorial	ANOVA as regression ③	501
	12.3.1.	An example with two independent variables \oslash	501
	12.3.2.	Extending the regression model ③	501
12.4.	Two-way ANOVA: behind the scenes 2		
	12.4.1.	Total sums of squares (SS $_{\scriptscriptstyle T}$) ${\it 2}$	506
	12.4.2.	The model sum of squares (SS _M) $\textcircled{2}$	507
	12.4.3.	The residual sum of squares (SS _R) ${}^{m ext{O}}$	510
	12.4.4.	The F-ratios ②	511
12.5.	Factorial	ANOVA using R 🛛	511
	12.5.1.	Packages for factorial ANOVA in R $oldsymbol{0}$	511
	12.5.2.	General procedure for factorial ANOVA 🛈	512
	12.5.3.	Factorial ANOVA using R Commander 📀	512
	12.5.4.	Entering the data 🛛	513
	12.5.5.	Exploring the data 🛛	516
	12.5.6.	Choosing contrasts 2	518
	12.5.7.	Fitting a factorial ANOVA model 2	520
	12.5.8.	Interpreting factorial ANOVA 2	520
	12.5.9.	Interpreting contrasts 2	524
	12.5.10.	Simple effects analysis ③	525
	12.5.11.	Post hoc analysis 🛛	528
	12.5.12.	Overall conclusions	530
	12.5.13.	Plots in factorial ANOVA 2	530
12.6.	Interpreti	ing interaction graphs 2	530
12.7.	Robust fa	actorial ANOVA 3	534
12.8.	Calculati	ng effect sizes ③	542
12.9.	Reporting	g the results of two-way ANOVA ②	544
	What hav	ve I discovered about statistics? ①	546

R packages used in this chapter	546
R functions used in this chapter	546
Key terms that I've discovered	547
Smart Alex's tasks	547
Further reading	548
Interesting real research	548

Repeated-measures designs (GLM 4)

13.1.	What wi	ll this chapter tell me? 🛛	549
13.2.	Introduc	tion to repeated-measures designs ②	550
	13.2.1.	The assumption of sphericity ②	551
	13.2.2.	How is sphericity measured? ②	551
	13.2.3.	Assessing the severity of departures from sphericity 2	552
	13.2.4.	What is the effect of violating the assumption of sphericity? ③	552
	13.2.5.	What do you do if you violate sphericity? 📀	554
13.3.	Theory of	of one-way repeated-measures ANOVA 🕲	554
	13.3.1.	The total sum of squares (SS $_{\scriptscriptstyle T}$) ②	557
	13.3.2.	The within-participant sum of squares (SS $_{ m W}$) $ extsf{0}$	558
	13.3.3.	The model sum of squares (SS $_{_{\sf M}}$) ②	559
	13.3.4.	The residual sum of squares (SS _R) $\textcircled{2}$	560
	13.3.5.	The mean squares ②	560
	13.3.6.	The F-ratio ②	560
	13.3.7.	The between-participant sum of squares @	561
13.4.	One-way	y repeated-measures designs using R ②	561
	13.4.1.	Packages for repeated measures designs in R $oldsymbol{0}$	561
	13.4.2.	General procedure for repeated-measures designs \bigcirc	562
	13.4.3.	Repeated-measures ANOVA using R Commander 😢	563
	13.4.4.	Entering the data 🛛	563
	13.4.5.	Exploring the data 2	565
	13.4.6.	Choosing contrasts 📀	568
	13.4.7.	Analysing repeated measures: two ways to skin a .dat $@$	569
	13.4.8.	Robust one-way repeated-measures ANOVA ③	576
13.5.	Effect si	zes for repeated-measures designs ③	580
13.6.	Reportir	ng one-way repeated-measures designs 🖉	581
13.7.	Factoria	l repeated-measures designs ②	583
	13.7.1.	Entering the data 🞱	584
	13.7.2.	Exploring the data 2	586
	13.7.3.	Setting contrasts 2	588
	13.7.4.	Factorial repeated-measures ANOVA 2	589
	13.7.5.	Factorial repeated-measures designs as a GLM ③	594
	13.7.6.	Robust factorial repeated-measures ANOVA ③	599
13.8.	Effect si	zes for factorial repeated-measures designs ③	599
13.9.	Reportir	ng the results from factorial repeated-measures designs ②	600
	What ha	ve I discovered about statistics? ②	601
	R packa	iges used in this chapter	602
	R function	ons used in this chapter	602
	Key tern	ns that I've discovered	602
	Smart A	lex's tasks	602

		Further reading	603	
		Interesting real research	603	
14	Mixed designs (GLM 5)			
	14.1.	What will this chapter tell me? \bigcirc	604	
	14.2.	Mixed designs ②	605	
	14.3.	What do men and women look for in a partner? ②	606	
	14.4.	Entering and exploring your data 2	606	
		14.4.1. Packages for mixed designs in R \bigcirc	606	
		14.4.2. General procedure for mixed designs ①	608	
		14.4.3. Entering the data ②	608	
		14.4.4. Exploring the data 2	610	
	14.5.	Mixed ANOVA (2)	613	
	14.6.	Mixed designs as a GLM ③	617	
		14.6.1. Setting contrasts 2	617	
		14.6.2. Building the model ②	619	
		14.6.3. The main effect of gender (2)	622	
		14.6.4. The main effect of looks (2)	623	
		14.6.5. The main effect of personality (2)	624	
		14.6.6. The interaction between gender and looks (2)	625	
		14.6.7. The interaction between gender and personality (2)	628	
		14.6.8. The interaction between looks and personality and conder @	630	
		14.6.10 Conclusions	620	
	117	Calculating effect sizes (3)	640	
	14.7.	Reporting the results of mixed $\Delta N \cap V \Delta $	641	
	14.0. 14.9	Robust analysis for mixed designs (3)	643	
	14.0.	What have L discovered about statistics? (2)	650	
		R packages used in this chapter	650	
		R functions used in this chapter	651	
		Key terms that I've discovered	651	
		Smart Alex's tasks	651	
		Further reading	652	
		Interesting real research	652	
15	Non-	-parametric tests	653	
	15 1	What will this chapter tell me? \oplus	653	
	15.2	When to use non-parametric tests (1)	654	
	15.3.	Packages used in this chapter ①	655	
	15.4.	Comparing two independent conditions: the Wilcoxon rank-sum test 1	655	
		15.4.1. Theory of the Wilcoxon rank-sum test @	655	
		15.4.2. Inputting data and provisional analysis ①	659	
		15.4.3. Running the analysis using R Commander 1	661	
		15.4.4. Running the analysis using R \bigcirc	662	
		15.4.5. Output from the Wilcoxon rank-sum test ①	664	
		15.4.6. Calculating an effect size ②	664	
		15.4.7. Writing the results ①	666	

••••••

	15.5.	Comparing two related conditions: the Wilcoxon signed-rank test \bigcirc	667
		15.5.1. Theory of the Wilcoxon signed-rank test ②	668
		15.5.2. Running the analysis with R Commander $①$	670
		15.5.3. Running the analysis using R \bigcirc	671
		15.5.4. Wilcoxon signed-rank test output ①	672
		15.5.5. Calculating an effect size ②	673
		15.5.6. Writing the results 1	673
	15.6.	Differences between several independent groups:	
		the Kruskal–Wallis test ①	674
		15.6.1. Theory of the Kruskal–Wallis test ②	675
		15.6.2. Inputting data and provisional analysis 🛈	677
		15.6.3. Doing the Kruskal–Wallis test using R Commander $①$	679
		15.6.4. Doing the Kruskal–Wallis test using R \bigcirc	679
		15.6.5. Output from the Kruskal–Wallis test ①	680
		15.6.6. Post hoc tests for the Kruskal–Wallis test ②	681
		15.6.7. Testing for trends: the Jonckheere–Terpstra test ②	684
		15.6.8. Calculating an effect size ②	685
		15.6.9. Writing and interpreting the results ①	686
	15.7.	Differences between several related groups: Friedman's ANOVA 🛈	686
		15.7.1. Theory of Friedman's ANOVA (2)	688
		15.7.2. Inputting data and provisional analysis ①	689
		15.7.3. Doing Friedman's ANOVA in R Commander ①	690
		15.7.4. Friedman's ANOVA using R 🛈	690
		15.7.5. Output from Friedman's ANOVA ①	691
		15.7.6. Post hoc tests for Friedman's ANOVA ②	691
		15.7.7. Calculating an effect size ②	692
		15.7.8. Writing and interpreting the results $①$	692
		What have I discovered about statistics? $①$	693
		R packages used in this chapter	693
		R functions used in this chapter	693
		Key terms that I've discovered	694
		Smart Alex's tasks	694
		Further reading	695
		Interesting real research	695
16	Mult	ivariate analysis of variance (MANOVA)	696
	16.1.	What will this chapter tell me? ②	696
	16.2.	When to use MANOVA @	697
	16.3.	Introduction: similarities to and differences from ANOVA 2	697
		16.3.1. Words of warning ②	699
		16.3.2. The example for this chapter ②	699
	16.4.	Theory of MANOVA ③	700
		16.4.1. Introduction to matrices ③	700
		16.4.2. Some important matrices and their functions ③	702
		16.4.3. Calculating MANOVA by hand: a worked example ③	703
		16.4.4. Principle of the MANOVA test statistic ④	710
	16.5.	Practical issues when conducting MANOVA ③	717

16.5.1. Assumptions and how to check them ③

		16.5.2.	Choosing a test statistic 3	718
		16.5.3.	Follow-up analysis ③	719
	16.6.	MANOVA	A using R 🕲	719
		16.6.1.	Packages for factorial ANOVA in R \bigcirc	719
		16.6.2.	General procedure for MANOVA 🛈	720
		16.6.3.	MANOVA using R Commander 2	720
		16.6.4.	Entering the data 2	720
		16.6.5.	Exploring the data ②	722
		16.6.6.	Setting contrasts (2)	728
		16.6.7.	The MANOVA model 2	728
		16.6.8.	Follow-up analysis: univariate test statistics ②	731
		16.6.9.	Contrasts ③	732
	16.7.	Robust N		733
	16.8.	Reportin	g results from MANOVA (2)	737
	16.9.	Following	g up MANOVA with discriminant analysis (3)	738
	16.10.	Reportin	g results from discriminant analysis (2)	743
	16.11.	Some fir	The first interpretation (743
		10.11.1.	Ine linal interpretation 4	743
	\//bot	16.11.2. hove I diev	Univariate ANOVA or discriminant analysis?	745
	Dipage	have i uiso	d in this sharter	743
	n pac	tione use	d in this chapter	740
	R functions used in this chapter			740
	Smart Alov's tasks			747
	Further reading			747
	Interes	stina real i	research	748
	interes	sting rouri		110
17	Expl	oratory	factor analysis	749
	17.1.	What wil	I this chapter tell me? ①	749
	17.2.	When to	use factor analysis 2	750
	17.3			
	17.0.	Factors	2	751
	17.0.	Factors (17.3.1.	② Graphical representation of factors ②	751 752
	17.0.	Factors (17.3.1. 17.3.2.	 Ø Graphical representation of factors Ø Mathematical representation of factors Ø 	751 752 753
	17.0.	Factors (17.3.1. 17.3.2. 17.3.3.	 ② Graphical representation of factors ② Mathematical representation of factors ② Factor scores ② 	751 752 753 755
	17.0.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4.	 ② Graphical representation of factors ② Mathematical representation of factors ② Factor scores ③ Choosing a method ② 	751 752 753 755 758
	17.0.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5.	 ② Graphical representation of factors ② Mathematical representation of factors ③ Factor scores ② Choosing a method ② Communality ② 	751 752 753 755 758 759
	11.0.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6.	 ② Graphical representation of factors ③ Mathematical representation of factors ② Factor scores ② Choosing a method ② Communality ③ Factor analysis vs. principal components analysis ② 	751 752 753 755 758 759 760
	11.0.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6. 17.3.7.	 ② Graphical representation of factors ② Mathematical representation of factors ② Factor scores ② Choosing a method ② Communality ③ Factor analysis vs. principal components analysis ③ 	751 752 753 755 758 759 760 761
	11.0.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6. 17.3.7. 17.3.8.	 ② ③ Graphical representation of factors ② Mathematical representation of factors ③ Factor scores ② Choosing a method ② Communality ② Factor analysis vs. principal components analysis ③ Theory behind principal components analysis ③ Factor extraction: eigenvalues and the scree plot ② 	751 752 753 755 758 759 760 761 762
		Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6. 17.3.7. 17.3.8. 17.3.9.	 Ø Graphical representation of factors Mathematical representation of factors Factor scores Choosing a method Communality Factor analysis vs. principal components analysis Theory behind principal components analysis Factor extraction: eigenvalues and the scree plot Improving interpretation: factor rotation 	751 752 753 755 758 759 760 761 762 764
	17.4.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6. 17.3.7. 17.3.8. 17.3.9. Researc	 Graphical representation of factors ② Mathematical representation of factors ② Factor scores ③ Choosing a method ② Communality ③ Factor analysis vs. principal components analysis ③ Factor extraction: eigenvalues and the scree plot ② Improving interpretation: factor rotation ③ h example ② 	751 752 753 755 758 759 760 761 762 764 764
	17.4.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6. 17.3.7. 17.3.8. 17.3.9. Researc 17.4.1.	 Ø Graphical representation of factors ⁽²⁾ Mathematical representation of factors ⁽²⁾ Factor scores ⁽²⁾ Choosing a method ⁽²⁾ Communality ⁽²⁾ Factor analysis vs. principal components analysis ⁽²⁾ Theory behind principal components analysis ⁽³⁾ Factor extraction: eigenvalues and the scree plot ⁽²⁾ Improving interpretation: factor rotation ⁽³⁾ h example ⁽²⁾ Sample size ⁽²⁾ 	751 752 753 755 758 759 760 761 762 764 767 769
	17.4.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6. 17.3.7. 17.3.8. 17.3.9. Researc 17.4.1. 17.4.2.	 Graphical representation of factors ⁽²⁾ Mathematical representation of factors ⁽²⁾ Factor scores ⁽²⁾ Choosing a method ⁽²⁾ Communality ⁽²⁾ Factor analysis vs. principal components analysis ⁽²⁾ Theory behind principal components analysis ⁽³⁾ Factor extraction: eigenvalues and the scree plot ⁽²⁾ Improving interpretation: factor rotation ⁽³⁾ h example ⁽²⁾ Sample size ⁽²⁾ Correlations between variables ⁽³⁾ 	751 752 753 755 758 759 760 761 762 764 764 767 769 770
	17.4.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6. 17.3.7. 17.3.8. 17.3.9. Researc 17.4.1. 17.4.2. 17.4.3.	 Graphical representation of factors ⁽²⁾ Mathematical representation of factors ⁽²⁾ Factor scores ⁽²⁾ Choosing a method ⁽²⁾ Communality ⁽²⁾ Factor analysis vs. principal components analysis ⁽²⁾ Theory behind principal components analysis ⁽³⁾ Factor extraction: eigenvalues and the scree plot ⁽²⁾ Improving interpretation: factor rotation ⁽³⁾ h example ⁽²⁾ Sample size ⁽²⁾ Correlations between variables ⁽³⁾ The distribution of data ⁽²⁾ 	751 752 753 755 758 759 760 761 762 764 767 769 770 772
	17.4.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6. 17.3.7. 17.3.8. 17.3.9. Researc 17.4.1. 17.4.2. 17.4.3. Running	 Graphical representation of factors ⁽²⁾ Mathematical representation of factors ⁽²⁾ Factor scores ⁽²⁾ Choosing a method ⁽²⁾ Communality ⁽²⁾ Factor analysis vs. principal components analysis ⁽²⁾ Theory behind principal components analysis ⁽³⁾ Factor extraction: eigenvalues and the scree plot ⁽²⁾ Improving interpretation: factor rotation ⁽³⁾ h example ⁽²⁾ Sample size ⁽²⁾ Correlations between variables ⁽³⁾ The distribution of data ⁽²⁾ the analysis with R Commander 	751 752 753 755 758 759 760 761 762 764 767 769 770 772 772
	17.4. 17.5. 17.6.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6. 17.3.7. 17.3.8. 17.3.9. Researc 17.4.1. 17.4.2. 17.4.3. Running Running	 Graphical representation of factors ⁽²⁾ Mathematical representation of factors ⁽²⁾ Factor scores ⁽²⁾ Choosing a method ⁽²⁾ Communality ⁽²⁾ Factor analysis vs. principal components analysis ⁽²⁾ Theory behind principal components analysis ⁽³⁾ Factor extraction: eigenvalues and the scree plot ⁽²⁾ Improving interpretation: factor rotation ⁽³⁾ h example ⁽²⁾ Sample size ⁽²⁾ Correlations between variables ⁽³⁾ The distribution of data ⁽²⁾ the analysis with R Commander the analysis with R 	751 752 753 755 758 759 760 761 762 764 764 767 769 770 772 772
	17.4. 17.5. 17.6.	Factors (17.3.1. 17.3.2. 17.3.3. 17.3.4. 17.3.5. 17.3.6. 17.3.7. 17.3.8. 17.3.9. Researc 17.4.1. 17.4.2. 17.4.3. Running Running 17.6.1.	 Graphical representation of factors ⁽²⁾ Mathematical representation of factors ⁽²⁾ Factor scores ⁽²⁾ Choosing a method ⁽²⁾ Communality ⁽²⁾ Factor analysis vs. principal components analysis ⁽²⁾ Theory behind principal components analysis ⁽³⁾ Factor extraction: eigenvalues and the scree plot ⁽²⁾ Improving interpretation: factor rotation ⁽³⁾ h example ⁽²⁾ Sample size ⁽²⁾ Correlations between variables ⁽³⁾ The distribution of data ⁽²⁾ the analysis with R Commander the analysis with R Packages used in this chapter ⁽¹⁾ 	751 752 753 755 758 759 760 761 762 764 762 764 767 769 770 772 772 772

xvii

826

827

829

829

835

837

838

838

840

843

		17.6.3.	Factor extraction using R 2	778
		17.6.4.	Rotation 2	788
		17.6.5.	Factor scores 2	793
		17.6.6.	Summary 🛛	795
	17.7.	How to r	eport factor analysis 🛈	795
	17.8.	Reliabilit	y analysis 🕲	797
		17.8.1.	Measures of reliability 3	797
		17.8.2.	Interpreting Cronbach's α (some cautionary tales) (2)	799
		17.8.3.	Reliability analysis with R Commander	800
		17.8.4.	Reliability analysis using R 🛛	800
		17.8.5.	Interpreting the output 2	801
	17.9.	Reportin	g reliability analysis 🛛	806
		What ha	ve I discovered about statistics? 2	807
		R packa	ges used in this chapter	807
		R functio	ons used in this chapter	808
		Key term	ns that I've discovered	808
		Smart Al	ex's tasks	808
		Further r	eading	810
		Interestir	ng real research	811
18	Cate	gorical o	lata	812
	18.1.	What wil	I this chapter tell me? ①	812
	18.2.	Package	es used in this chapter $①$	813
	18.3.	Analysin	g categorical data 1	813
	18.4.	Theory c	of analysing categorical data ①	814
		18.4.1.	Pearson's chi-square test ①	814
		18.4.2.	Fisher's exact test ①	816
		18.4.3.	The likelihood ratio 2	816
		18.4.4.	Yates's correction @	817
	18.5.	Assump	tions of the chi-square test ①	818
	18.6.	Doing th	e chi-square test using R ①	818
		18.6.1.	Entering data: raw scores ①	818
		18.6.2.	Entering data: the contingency table 1	819
		18.6.3.	Running the analysis with R Commander ①	820
		18.6.4.	Running the analysis using R \bigcirc	821
		18.6.5.	Output from the CrossTable() function ①	822
		18.6.6.	Breaking down a significant chi-square test with	

standardized residuals (2)

18.7. Several categorical variables: loglinear analysis ③

Loglinear analysis ③

Initial considerations (2)

18.8. Assumptions in loglinear analysis 2

18.9. Loglinear analysis using R 2

Calculating an effect size 2

Chi-square as regression ④

Reporting the results of chi-square 1

Loglinear analysis as a chi-square test 2

Output from loglinear analysis as a chi-square test 2

18.6.7.

18.6.8.

18.7.1.

18.7.2.

18.9.1.

18.9.2.

18.9.3.

xviii

18.9.4. Loglinear analysis 🞱	845
18.10. Following up loglinear analysis 🕲	850
18.11. Effect sizes in loglinear analysis 2	851
18.12. Reporting the results of loglinear analysis 2	851
What have I discovered about statistics? \oplus	852
R packages used in this chapter	853
R functions used in this chapter	853
Key terms that I've discovered	853
Smart Alex's tasks ③	853
Further reading	854
Interesting real research	854

19 Multilevel linear models 19.1. What will this chapter tell me? ① 19.2. Hierarchical data ② 19.2.1. The intraclass correlation ② 19.2.2. Benefits of multilevel models ③ 19.3. Theory of multilevel linear models ③

19.3.	Theory o	f multilevel linear models ③	860
	19.3.1.	An example ②	861
	19.3.2.	Fixed and random coefficients ③	862
19.4.	The mult	ilevel model ④	865
	19.4.1.	Assessing the fit and comparing multilevel models ${\color{red} { { $	867
	19.4.2.	Types of covariance structures ④	868
19.5.	Some pr	actical issues 3	870
	19.5.1.	Assumptions ③	870
	19.5.2.	Sample size and power ③	870
	19.5.3.	Centring variables ④	871
19.6.	Multileve	el modelling in R ④	873
	19.6.1.	Packages for multilevel modelling in R	873
	19.6.2.	Entering the data 🕗	873
	19.6.3.	Picturing the data 2	874
	19.6.4.	Ignoring the data structure: ANOVA 2	874
	19.6.5.	Ignoring the data structure: ANCOVA 2	876
	19.6.6.	Assessing the need for a multilevel model ③	878
	19.6.7.	Adding in fixed effects 3	881
	19.6.8.	Introducing random slopes ④	884
	19.6.9.	Adding an interaction term to the model $\textcircled{9}$	886
19.7.	Growth r	nodels ④	892
	19.7.1.	Growth curves (polynomials) ④	892
	19.7.2.	An example: the honeymoon period 2	894
	19.7.3.	Restructuring the data 3	895
	19.7.4.	Setting up the basic model ④	895
	19.7.5.	Adding in time as a fixed effect ③	897
	19.7.6.	Introducing random slopes ④	897
	19.7.7.	Modelling the covariance structure ④	897
	19.7.8.	Comparing models ③	899
	19.7.9.	Adding higher-order polynomials ③	901
	19.7.10.	Further analysis ④	905

.....

906
907
908
908
908
908
909
909
910
912
913
929
929
935
936
940
941
0/8
940
956
957

Karma Police, arrest this man, he talks in maths, he buzzes like a fridge, he's like a detuned radio.

Radiohead, 'Karma Police', OK Computer (1997)

Introduction

Many social science students (and researchers for that matter) despise statistics. For one thing, most of us have a non-mathematical background, which makes understanding complex statistical equations very difficult. Nevertheless, the evil goat-warriors of Satan force our non-mathematical brains to apply themselves to what is, essentially, the very complex task of becoming a statistics expert. The end result, as you might expect, can be quite messy. The one weapon that we have is the computer, which allows us to neatly circumvent the considerable disability that is not understanding mathematics. The advent of computer programs such as SAS, SPSS, R and the like provides a unique opportunity to teach statistics at a conceptual level without getting *too* bogged down in equations. The computer to a goat-warrior of Satan is like catnip to a cat: it makes them rub their heads along the ground and purr and dribble ceaselessly. The only downside of the computer is that it makes it really easy to make a complete idiot of yourself if you don't really understand what you're doing. Using a computer without any statistical knowledge at all can be a dangerous thing. Hence this book. Well, actually, hence a book called *Discovering Statistics Using SPSS*.

I wrote *Discovering Statistics Using SPSS* just as I was finishing off my Ph.D. in Psychology. My main aim was to write a book that attempted to strike a good balance between theory and practice: I wanted to use the computer as a tool for teaching statistical concepts in the hope that you will gain a better understanding of both theory and practice. If you want theory and you like equations then there are certainly better books: Howell (2006), Stevens (2002) and Tabachnick and Fidell (2007) are peerless as far as I am concerned and have taught me (and continue to teach me) more about statistics than you could possibly imagine. (I have an ambition to be cited in one of these books but I don't think that will ever happen.) However, if you want a book that incorporates digital rectal stimulation then you have just spent your money wisely. (I should probably clarify that the stimulation is in the context of an example, you will not find any devices attached to the inside cover for you to stimulate your rectum while you read. Please feel free to get your own device if you think it will help you to learn.)

A second, not in any way ridiculously ambitious, aim was to make this the only statistics textbook that anyone ever needs to buy. As such, it's a book that I hope will become your friend from first year right through to your professorship. I've tried to write a book that can be read at several levels (see the next section for more guidance). There are chapters for first-year undergraduates (1, 2, 3, 4, 5, 6, 9 and 15), chapters for second-year undergraduates (5, 7, 10, 11, 12, 13 and 14) and chapters on more advanced topics that postgraduates might use (8, 16, 17, 18 and 19). All of these chapters should be accessible to everyone, and I hope to achieve this by flagging the level of each section (see the next section).

My third, final and most important aim is make the learning process fun. I have a sticky history with maths because I used to be terrible at it:

MATHEMATICS ADDL MATHS	43 59	27 2 0	the work string last it discipling the stronger and present to them. I that I have been to the strong of the stron
CURANETRA			

Above is an extract of my school report at the age of 11. The '27=' in the report is to say that I came equal 27th with another student out of a class of 29. That's almost bottom of the class. The 43 is my exam mark as a percentage. Oh dear. Four years later (at 15) this was my school report:

FORM 4. Q SUBJECT Maltenatics NAME Andrew Field Andrew's progress in Mattematics has ATTAINMENT been remarkable. From being a weaker conditate who laded confidence behave EFFORT he has developed into a budding Hathenstricia. He should achieve a good grade Date 27688

What led to this remarkable change? It was having a good teacher: my brother, Paul. In fact I owe my life as an academic to Paul's ability to do what my maths teachers couldn't: teach me stuff in an engaging way. To this day he still pops up in times of need to teach me things (many tutorials in computer programming spring to mind). Anyway, the reason he's a great teacher is because he's able to make things interesting and relevant to me. He got the 'good teaching' genes in the family, but they're wasted because he doesn't teach for a living; they're a little less wasted though because his approach inspires my lectures and books. One thing that I have learnt is that people appreciate the human touch, and so I tried to inject a lot of my own personality and sense of humour (or lack of) into Discovering Statistics Using ... books. Many of the examples in this book, although inspired by some of the craziness that you find in the real world, are designed to reflect topics that play on the minds of the average student (i.e., sex, drugs, rock and roll, celebrity, people doing crazy stuff). There are also some examples that are there just because they made me laugh. So, the examples are light-hearted (some have said 'smutty' but I prefer 'light-hearted') and by the end, for better or worse, I think you will have some idea of what goes on in my head on a daily basis. I apologize to those who think it's crass, hate it, or think that I'm undermining the seriousness of science, but, come on, what's not funny about a man putting an eel up his anus?

Did I succeed in these aims? Maybe I did, maybe I didn't, but the SPSS book on which this **R** book is based has certainly been popular and I enjoy the rare luxury of having many complete strangers emailing me to tell me how wonderful I am. (Admittedly, occassionally people email to tell me that they think I'm a pile of gibbon excrement but you have to take the rough with the smooth.) It also won the British Psychological Society book award in 2007. I must have done something right. However, *Discovering Statistics Using SPSS* has one very large flaw: not everybody uses SPSS. Some people use **R**. **R** has one fairly big advantage over other statistical packages in that it is free. That's right, it's free. Completely and utterly free. People say that there's no such thing as a free lunch, but they're wrong: **R** is a feast of succulent delights topped off with a baked cheesecake and nothing to pay at the end of it.

It occurred to me that it would be great to have a version of the book that used all of the same theory and examples from the SPSS book but written about **R**. Genius. Genius except that I knew very little about **R**. Six months and quite a few late nights later and I know a lot more about **R** than I did when I started this insane venture. Along the way I have been helped by a very nice guy called Jeremy (a man who likes to put eels in his CD player rather than anywhere else), and an even nicer wife. Both of their contributions have been concealed somewhat by our desire to keep the voice of the book mine, but they have both contributed enormously. (Jeremy's contributions are particularly easy to spot: if it reads like a statistics genius struggling manfully to coerce the words of a moron into something approximating factual accuracy, then Jeremy wrote it.)

What are you getting for your money?

This book takes you on a journey (possibly through a very narrow passage lined with barbed wire) not just of statistics but of the weird and wonderful contents of the world and my brain. In short, it's full of stupid examples, bad jokes, smut and filth. Aside from the smut, I have been forced reluctantly to include some academic content. Over many editions of the SPSS book many people have emailed me with suggestions, so, in theory, what you currently have in your hands should answer any question anyone has asked me over the past ten years. It won't, but it should, and I'm sure you can find some new questions to ask. It has some other unusual features:

- Everything you'll ever need to know: I want this to be good value for money so the book guides you from complete ignorance (Chapter 1 tells you the basics of doing research) to being an expert on multilevel modelling (Chapter 19). Of course no book that you can actually lift off the floor will contain everything, but I think this one has a fair crack at taking you from novice to postgraduate level expertise. It's pretty good for developing your biceps also.
- Stupid faces: You'll notice that the book is riddled with stupid faces, some of them my own. You can find out more about the pedagogic function of these 'characters' in the next section, but even without any useful function they're still nice to look at.
- Data sets: There are about 100 data files associated with this book on the companion website. Not unusual in itself for a statistics book, but my data sets contain more sperm (not literally) than other books. I'll let you judge for yourself whether this is a good thing.
- My life story: Each chapter is book-ended by a chronological story from my life. Does this help you to learn about statistics? Probably not, but hopefully it provides some light relief between chapters.
- **R** tips: R does weird things sometimes. In each chapter, there are boxes containing tips, hints and pitfalls related to R.
- Self-test questions: Given how much students hate tests, I thought the best way to commit commercial suicide was to liberally scatter tests throughout each chapter. These range from simple questions to test what you have just learned to going back to a technique that you read about several chapters before and applying it in a new context. All of these questions have answers to them on the companion website. They are there so that you can check on your progress.

The book also has some more conventional features:

- **Reporting your analysis:** Every single chapter has a guide to writing up your analysis. Obviously, how one writes up an analysis varies a bit from one discipline to another and, because I'm a psychologist, these sections are quite psychology-based. Nevertheless, they should get you heading in the right direction.
- **Glossary**: Writing the glossary was so horribly painful that it made me stick a vacuum cleaner into my ear to suck out my own brain. You can find my brain in the bottom of the vacuum cleaner in my house.
- **Real-world data**: Students like to have 'real data' to play with. The trouble is that real research can be quite boring. However, just for you, I trawled the world for examples of research on really fascinating topics (in my opinion). I then stalked the authors of the research until they gave me their data. Every chapter has a real research example.

Goodbye

The SPSS version of this book has literally consumed the last 13 years or so of my life, and this **R** version has consumed the last 6 months. I am literally typing this as a withered husk. I have no idea whether people use **R**, and whether this version will sell, but I think they should (use **R**, that is, not necessarily buy the book). The more I have learnt about **R** through writing this book, the more I like it.

This book in its various forms has been a huge part of my adult life; it began as and continues to be a labour of love. The book isn't perfect, and I still love to have feedback (good or bad) from the people who matter most: you.

Andy

- Contact details: http://www. discoveringstatistics.com/html/email.html
- Twitter: @ProfAndyField
- Blog: http://www.methodspace.com/profile/ProfessorAndyField

HOW TO USE THIS BOOK

When the publishers asked me to write a section on 'How to use this book' it was obviously tempting to write 'Buy a large bottle of Olay anti-wrinkle cream (which you'll need to fend off the effects of ageing while you read), find a comfy chair, sit down, fold back the front cover, begin reading and stop when you reach the back cover.' However, I think they wanted something more useful. ©

What background knowledge do I need?

In essence, I assume you know nothing about statistics, but I do assume you have some very basic grasp of computers (I won't be telling you how to switch them on, for example) and maths (although I have included a quick revision of some very basic concepts so I really don't assume anything).

Do the chapters get more difficult as I go through the book?

In a sense they do (Chapter 16 on MANOVA is more difficult than Chapter 1), but in other ways they don't (Chapter 15 on non-parametric statistics is arguably less complex than Chapter 14, and Chapter 9 on the *t*-test is definitely less complex than Chapter 8 on logistic regression). Why have I done this? Well, I've ordered the chapters to make statistical sense (to me, at least). Many books teach different tests in isolation and never really give you a grip of the similarities between them; this, I think, creates an unnecessary mystery. Most of the tests in this book are the same thing expressed in slightly different ways. So, I wanted the book to tell this story. To do this I have to do certain things such as explain regression fairly early on because it's the foundation on which nearly everything else is built.

However, to help you through I've coded each section with an icon. These icons are designed to give you an idea of the difficulty of the section. It doesn't necessarily mean you can skip the sections (but see Smart Alex in the next section), but it will let you know whether a section is at about your level, or whether it's going to push you. I've based the icons on my own teaching so they may not be entirely accurate for everyone (especially as systems vary in different countries!):

- ① This means 'level 1' and I equate this to first-year undergraduate in the UK. These are sections that everyone should be able to understand.
- ⁽²⁾ This is the next level and I equate this to second-year undergraduate in the UK. These are topics that I teach my second years and so anyone with a bit of background in statistics should be able to get to grips with them. However, some of these sections will be quite challenging even for second years. These are intermediate sections.

- ③ This is 'level 3' and represents difficult topics. I'd expect third-year (final-year) UK undergraduates and recent postgraduate students to be able to tackle these sections.
- ④ This is the highest level and represents very difficult topics. I would expect these sections to be very challenging to undergraduates and recent postgraduates, but post-graduates with a reasonable background in research methods shouldn't find them too much of a problem.

Why do I keep seeing stupid faces everywhere?

Brian Haemorrhage: Brian's job is to pop up to ask questions and look permanently confused. It's no surprise to note, therefore, that he doesn't look entirely different from the author (he has more hair though). As the book progresses he becomes increasingly despondent. Read into that what you will.

Curious Cat: He also pops up and asks questions (because he's curious). Actually the only reason he's here is because I wanted a cat in the book ... and preferably one that looks like mine. Of course the educational specialists think he needs a specific role, and so his role is to look cute and make bad cat-related jokes.

Cramming Sam: Samantha hates statistics. In fact, she thinks it's all a boring waste of time and she just wants to pass her exam and forget that she ever had to know anything about normal distributions. So, she appears and gives you a summary of the key points that you need to know. If, like Samantha, you're cramming for an exam, she will tell you the essential information to save you having to trawl through hundreds of pages of my drivel.

Jane Superbrain: Jane is the cleverest person in the whole universe (she makes Smart Alex look like a bit of an imbecile). The reason she is so clever is that she steals the brains of statisticians and eats them. Apparently they taste of sweaty tank tops, but nevertheless she likes them. As it happens she is also able to absorb the contents of brains while she eats them. Having devoured some top statistics brains she knows all the really hard stuff and appears in boxes to tell you really advanced things that are a bit tangential to the main text. (Readers should note that Jane wasn't interested in eating my brain. That tells you all that you need to know about my statistics ability.)

Labcoat Leni: Leni is a budding young scientist and he's fascinated by real research. He says, 'Andy, man, I like an example about using an eel as a cure for constipation as much as the next man, but all of your examples are made up. Real data aren't like that, we need some real examples, dude!' So off Leni went; he walked the globe, a lone data warrior in a thankless quest for real data. He turned up at universities, cornered academics, kidnapped their families and threatened to put them in a bath of crayfish unless he was given real data. The generous ones relented, but others? Well, let's just say their families are sore. So, when you see Leni you know that you will get some real data, from a real research study to analyse. Keep it real.

Oliver Twisted: With apologies to Charles Dickens, Oliver, like the more famous fictional London urchin, is always asking 'Please Sir, can I have some more?' Unlike Master Twist though, our young Master Twisted always wants more statistics information. Of course he does, who wouldn't? Let us not be the ones to disappoint a young, dirty, slightly smelly boy who dines on gruel, so when Oliver appears you can be certain of one thing: there is additional information to be found on the companion website. (Don't be shy; download it and bathe in the warm asp's milk of knowledge.)

R's Souls: People who love statistics are damned to hell for all eternity, people who like **R** even more so. However, **R** and statistics are secretly so much fun that Satan is inundated with new lost souls, converted to the evil of statistical methods. Satan needs a helper to collect up all the souls of those who have been converted to the joy of **R**. While collecting the souls of the statistical undead, they often cry out useful tips to him. He's collected these nuggets of information and spread them through the book like a demonic plague of beetles. When Satan's busy spanking a goat, his helper pops up in a box to tell you some of **R**'s Souls' Tips.

Smart Alex: Alex is a very important character because he appears when things get particularly difficult. He's basically a bit of a smart alec and so whenever you see his face you know that something scary is about to be explained. When the hard stuff is over he reappears to let you know that it's safe to continue. Now, this is not to say that all of the rest of the material in the book is easy, he just lets you know the bits of the book that you can skip if you've got better things to do with your life than read all 1000 pages! So, if you see Smart Alex then you can *skip the section* entirely and still understand what's going on. You'll also find that Alex pops up at the end of each chapter to give you some tasks to do to see whether you're as smart as he is.

What is on the companion website?

In this age of downloading, CD-ROMs are for losers (at least that's what the 'kids' tell me) so I've put my cornucopia of additional funk on that worldwide interweb thing. This has two benefits: 1) the book is *slightly* lighter than it would have been, and 2) rather than being restricted to the size of a CD-ROM, there is no limit to the amount of fascinating extra material that I can give you (although Sage have had to purchase a new server to fit it all on). To enter my world of delights, go to www.sagepub.co.uk/dsur.

How will you know when there are extra goodies on this website? Easy-peasy, Oliver Twisted appears in the book to indicate that there's something you need (or something extra) on the website. The website contains resources for students and lecturers alike:

- Data files: You need data files to work through the examples in the book and they are all on the companion website. We did this so that you're forced to go there and once you're there Sage will flash up subliminal messages that make you buy more of their books.
- **R** script files: if you put all of the **R** commands in this book next to each other and printed them out you'd have a piece of paper that stretched from here to the Tarantula Nebula (which actually exists and sounds like a very scary place). If you type all of these commands into **R** you will wear away your fingers to small stumps. I would never forgive myself if you all got stumpy fingers so the website has script files containing every single **R** command in the book (including within chapter questions and activities).

- Webcasts: My publisher thinks that watching a film of me explaining what this book is all about will get people flocking to the bookshop. I think it will have people flocking to the medicine cabinet. Either way, if you want to see how truly uncharismatic I am, watch and cringe. There are also a few webcasts of lectures given by me relevant to the content of the book.
- Self-Assessment Multiple-Choice Questions: Organized by chapter, these will allow you to test whether wasting your life reading this book has paid off so that you can walk confidently into an examination much to the annoyance of your friends. If you fail said exam, you can employ a good lawyer and sue.
- Additional material: Enough trees have died in the name of this book, but still it gets longer and still people want to know more. Therefore, we've written nearly 300 pages, yes, three hundred, of additional material for the book. So for some more technical topics and help with tasks in the book the material has been provided electronically so that (1) the planet suffers a little less, and (2) you won't die when the book falls off of your bookshelf onto your head.
- Answers: each chapter ends with a set of tasks for you to test your newly acquired expertise. The chapters are also littered with self-test questions and Labcoat Leni's assignments. How will you know if you get these correct? Well, the companion website contains around 300 pages (that's a different 300 pages to the 300 above) of detailed answers. Will we ever stop writing?
- **Powerpoint slides:** I can't come and personally teach you all. Instead I rely on a crack team of highly skilled and super intelligent pan-dimensional beings called 'lecturers'. I have personally grown each and every one of them in a greenhouse in my garden. To assist in their mission to spread the joy of statistics I have provided them with powerpoint slides for each chapter.
- Links: every website has to have links to other useful websites and the companion website is no exception.
- Cyberworms of knowledge: I have used nanotechnology to create cyberworms that crawl down your broadband connection, pop out of the USB port of your computer then fly through space into your brain. They re-arrange your neurons so that you understand statistics. You don't believe me? Well, you'll never know for sure unless you visit the companion website ...

Happy reading, and don't get sidetracked by Facebook and Twitter.

SYMBOLS USED IN THIS BOOK

Mathematical operators

Σ	This symbol (called sigma) means 'add everything up'. So, if you see something like Σx_i it just means 'add up all of the scores you've collected'.
П	This symbol means 'multiply everything'. So, if you see something like Πx_i it just means 'multiply all of the scores you've collected'.
\sqrt{X}	This means 'take the square root of x '.

Greek symbols

α	The probability of making a Type I error
β	The probability of making a Type II error
β_i	Standardized regression coefficient
χ^2	Chi-square test statistic
χ^2_F	Friedman's ANOVA test statistic
ε	Usually stands for 'error'
η^2	Eta-squared
μ	The mean of a population of scores
ρ	The correlation in the population
σ^2	The variance in a population of data
σ	The standard deviation in a population of data
$\sigma_{\overline{\chi}}$	The standard error of the mean
τ	Kendall's tau (non-parametric correlation coefficient)
ω^2	Omega squared (an effect size measure). This symbol also means 'expel the contents of your intestine immediately into your trousers'; you will understand why in due course.

b _i	The regression coefficient (unstandardized)
df	Degrees of freedom
e _i	The error associated with the <i>i</i> th person
F	F-ratio (test statistic used in ANOVA)
Н	Kruskal–Wallis test statistic
k	The number of levels of a variable (i.e. the number of treatment conditions), or the number of predictors in a regression model
In	Natural logarithm
MS	The mean squared error. The average variability in the data
N, n, n _i	The sample size. N usually denotes the total sample size, whereas n usually denotes the size of a particular group
P	Probability (the probability value, p -value or significance of a test are usually denoted by p)
r	Pearson's correlation coefficient
r _s	Spearman's rank correlation coefficient
<i>r</i> _{b,} <i>r</i> _{pb}	Biserial correlation coefficient and point-biserial correlation coefficient respectively
R	The multiple correlation coefficient
R^2	The coefficient of determination (i.e. the proportion of data explained by the model)
S ²	The variance of a sample of data
S	The standard deviation of a sample of data
SS	The sum of squares, or sum of squared errors to give it its full title
SS _A	The sum of squares for variable A
SS _M	The model sum of squares (i.e. the variability explained by the model fitted to the data)
SS _R	The residual sum of squares (i.e. the variability that the model can't explain – the error in the model)
SS _T	The total sum of squares (i.e. the total variability within the data)
t	Test statistic for Student's t-test
Т	Test statistic for Wilcoxon's matched-pairs signed-rank test
U	Test statistic for the Mann-Whitney test
W _s	Test statistic for the Shapiro–Wilk test and the Wilcoxon's rank-sum test
\overline{X} or \overline{x}	The mean of a sample of scores
Z	A data point expressed in standard deviation units

Why is my evil lecturer forcing me to learn statistics?

FIGURE 1.1 When I grow up, please don't let me be a statistics lecturer

1.1. What will this chapter tell me? ①

I was born on 21 June 1973. Like most people, I don't remember anything about the first few years of life and like most children I did go through a phase of driving my parents mad by asking 'Why?' every five seconds. 'Dad, why is the sky blue?', 'Dad, why doesn't mummy have a willy?', etc. Children are naturally curious about the world. I remember at the age of 3 being at a party of my friend Obe (this was just before he left England to return to Nigeria, much to my distress). It was a hot day, and there was an electric fan blowing cold air around the room. As I said, children are natural scientists and my

1.3. Initial observation: finding something that needs explaining ^①

The first step in Figure 1.2 was to come up with a question that needs an answer. I spend rather more time than I should watching reality TV. Every year I swear that I won't get hooked on *Big Brother*, and yet every year I find myself glued to the TV screen waiting for the next contestant's meltdown (I am a psychologist, so really this is just research – honestly). One question I am constantly perplexed by is why every year there are so many contestants with really unpleasant personalities (my money is on narcissistic personality disorder⁴) on the show. A lot of scientific endeavour starts this way: not by watching *Big Brother*, but by observing something in the world and wondering why it happens.

Having made a casual observation about the world (*Big Brother* contestants on the whole have profound personality defects), I need to collect some data to see whether this observation is true (and not just a biased observation). To do this, I need to define one or more **variables** that I would like to measure. There's one variable in this example: the personality of the contestant. I could measure this variable by giving them one of the many well-established questionnaires that measure personality characteristics. Let's say that I did this and I found that 75% of contestants did have narcissistic personality disorder. These data support my observation: a lot of *Big Brother* contestants have extreme personalities.

1.4. Generating theories and testing them ①

The next logical thing to do is to explain these data (Figure 1.2). One explanation could be that people with narcissistic personality disorder are more likely to audition for Big Brother than those without. This is a **theory**. Another possibility is that the producers of *Big Brother* are more likely to select people who have narcissistic personality disorder to be contestants than those with less extreme personalities. This is another theory. We verified our original observation by collecting data, and we can collect more data to test our theories. We can make two predictions from these two theories. The first is that the number of people turning up for an audition that have narcissistic personality disorder will be higher than the general level in the population (which is about 1%). A prediction from a theory, like this one, is known as a hypothesis (see Jane Superbrain Box 1.1). We could test this hypothesis by getting a team of clinical psychologists to interview each person at the *Big Brother* audition and diagnose them as having narcissistic personality disorder or not. The prediction from our second theory is that if the Big Brother selection panel are more likely to choose people with narcissistic personality disorder then the rate of this disorder in the final contestants will be even higher than the rate in the group of people going for auditions. This is another hypothesis. Imagine we collected these data; they are in Table 1.1.

In total, 7662 people turned up for the audition. Our first hypothesis is that the percentage of people with narcissistic personality disorder will be higher at the audition than the general level in the population. We can see in the table that of the 7662 people at the audition, 854 were diagnosed with the disorder; this is about 11% ($854/7662 \times 100$), which is much higher than the 1% we'd expect. Therefore, hypothesis 1 is supported by the data. The second hypothesis was that the *Big Brother* selection panel have a bias to chose people with narcissistic personality disorder. If we look at the 12 contestants that they selected, 9 of them had the disorder (a massive 75%). If the producers did not have a bias we would

⁴ This disorder is characterized by (among other things) a grandiose sense of self-importance, arrogance, lack of empathy for others, envy of others and belief that others envy them, excessive fantasies of brilliance or beauty, the need for excessive admiration and exploitation of others.