# Introduction to Meta-Analysis

### **Michael Borenstein**

Biostat, Inc, New Jersey, USA.

## Larry V. Hedges

Northwestern University, Evanston, USA.

# Julian P.T. Higgins

MRC, Cambridge, UK.

### Hannah R. Rothstein

Baruch College, New York, USA.



### Contents

| Lis | t of Tables                               | xiii |
|-----|-------------------------------------------|------|
| Lis | List of Figures                           |      |
| Acl | Acknowledgements                          |      |
| Pre | face                                      | xxi  |
| We  | b site                                    | xxix |
| PAF | RT 1: INTRODUCTION                        |      |
| 1   | HOW A META-ANALYSIS WORKS                 | 3    |
|     | Introduction                              | 3    |
|     | Individual studies                        | 3    |
|     | The summary effect                        | 5    |
|     | Heterogeneity of effect sizes             | 6    |
|     | Summary points                            | 7    |
| 2   | WHY PERFORM A META-ANALYSIS               | 9    |
|     | Introduction                              | 9    |
|     | The streptokinase meta-analysis           | 10   |
|     | Statistical significance                  | 11   |
|     | Clinical importance of the effect         | 12   |
|     | Consistency of effects                    | 12   |
|     | Summary points                            | 14   |
| PAF | RT 2: EFFECT SIZE AND PRECISION           |      |
| 3   | OVERVIEW                                  | 17   |
|     | Treatment effects and effect sizes        | 17   |
|     | Parameters and estimates                  | 18   |
|     | Outline of effect size computations       | 19   |
| 4   | EFFECT SIZES BASED ON MEANS               | 21   |
|     | Introduction                              | 21   |
|     | Raw (unstandardized) mean difference D    | 21   |
|     | Standardized mean difference, $d$ and $g$ | 25   |
|     | Response ratios                           | 30   |
|     | Summary points                            | 32   |

| 5   | EFFECT SIZES BASED ON BINARY DATA (2 $	imes$ 2 TABLES) | 33 |
|-----|--------------------------------------------------------|----|
|     | Introduction                                           | 33 |
|     | Risk ratio                                             | 34 |
|     | Odds ratio                                             | 36 |
|     | Risk difference                                        | 37 |
|     | Choosing an effect size index                          | 38 |
|     | Summary points                                         | 39 |
| 6   | EFFECT SIZES BASED ON CORRELATIONS                     | 41 |
|     | Introduction                                           | 41 |
|     | Computing <i>r</i>                                     | 41 |
|     | Other approaches                                       | 43 |
|     | Summary points                                         | 43 |
| 7   | CONVERTING AMONG EFFECT SIZES                          | 45 |
|     | Introduction                                           | 45 |
|     | Converting from the log odds ratio to d                | 47 |
|     | Converting from d to the log odds ratio                | 47 |
|     | Converting from <i>r</i> to <i>d</i>                   | 48 |
|     | Converting from <i>d</i> to <i>r</i>                   | 48 |
|     | Summary points                                         | 49 |
| 8   | FACTORS THAT AFFECT PRECISION                          | 51 |
|     | Introduction                                           | 51 |
|     | Factors that affect precision                          | 52 |
|     | Sample size                                            | 52 |
|     | Study design                                           | 53 |
|     | Summary points                                         | 55 |
| 9   | CONCLUDING REMARKS                                     | 57 |
| PAF | RT 3: FIXED-EFFECT VERSUS RANDOM-EFFECTS MODELS        |    |
| 10  | OVERVIEW                                               | 61 |
| -   | Introduction                                           | 61 |
|     | Nomenclature                                           | 62 |
| 11  | FIXED-EFFECT MODEL                                     | 63 |
|     | Introduction                                           | 63 |
|     | The true effect size                                   | 63 |
|     | Impact of sampling error                               | 63 |

vi

|     | Contents                                                | vii |
|-----|---------------------------------------------------------|-----|
|     |                                                         | (5  |
|     | Performing a fixed-effect meta-analysis                 | 65  |
|     | Summary points                                          | 67  |
| 12  | RANDOM-EFFECTS MODEL                                    | 69  |
|     | Introduction                                            | 69  |
|     | The true effect sizes                                   | 69  |
|     | Impact of sampling error                                | 70  |
|     | Performing a random-effects meta-analysis               | 72  |
|     | Summary points                                          | 74  |
| 13  | FIXED-EFFECT VERSUS RANDOM-EFFECTS MODELS               | 77  |
|     | Introduction                                            | 77  |
|     | Definition of a summary effect                          | 77  |
|     | Estimating the summary effect                           | 78  |
|     | Extreme effect size in a large study or a small study   | 79  |
|     | Confidence interval                                     | 80  |
|     | The null hypothesis                                     | 83  |
|     | Which model should we use?                              | 83  |
|     | Model should not be based on the test for heterogeneity | 84  |
|     | Concluding remarks                                      | 85  |
|     | Summary points                                          | 85  |
| 14  | WORKED EXAMPLES (PART 1)                                | 87  |
|     | Introduction                                            | 87  |
|     | Worked example for continuous data (Part 1)             | 87  |
|     | Worked example for binary data (Part 1)                 | 92  |
|     | Worked example for correlational data (Part 1)          | 97  |
|     | Summary points                                          | 102 |
|     |                                                         |     |
| PAF | RT 4: HETEROGENEITY                                     |     |
| 15  | OVERVIEW                                                | 105 |
|     | Introduction                                            | 105 |
|     | Nomenclature                                            | 106 |
|     | Worked examples                                         | 106 |
| 16  | IDENTIFYING AND QUANTIFYING HETEROGENEITY               | 107 |
|     | Introduction                                            | 107 |
|     | Isolating the variation in true effects                 | 107 |
|     | Computing $Q_{2}$                                       | 109 |
|     | Estimating $\tau^2$                                     | 114 |
|     | The $I^2$ statistic                                     | 117 |

|    |                                                                 | 110 |
|----|-----------------------------------------------------------------|-----|
|    | Comparing the measures of heterogeneity $2$                     | 119 |
|    | Confidence intervals for $\tau^2$                               | 122 |
|    | Confidence intervals (or uncertainty intervals) for $I^2$       | 124 |
|    | Summary points                                                  | 125 |
| 17 | PREDICTION INTERVALS                                            | 127 |
|    | Introduction                                                    | 127 |
|    | Prediction intervals in primary studies                         | 127 |
|    | Prediction intervals in meta-analysis                           | 129 |
|    | Confidence intervals and prediction intervals                   | 131 |
|    | Comparing the confidence interval with the prediction interval  | 132 |
|    | Summary points                                                  | 133 |
| 18 | WORKED EXAMPLES (PART 2)                                        | 135 |
|    | Introduction                                                    | 135 |
|    | Worked example for continuous data (Part 2)                     | 135 |
|    | Worked example for binary data (Part 2)                         | 139 |
|    | Worked example for correlational data (Part 2)                  | 143 |
|    | Summary points                                                  | 147 |
| 19 | SUBGROUP ANALYSES                                               | 149 |
|    | Introduction                                                    | 149 |
|    | Fixed-effect model within subgroups                             | 151 |
|    | Computational models                                            | 161 |
|    | Random effects with separate estimates of $\tau^2$              | 164 |
|    | Random effects with pooled estimate of $\tau^2$                 | 171 |
|    | The proportion of variance explained                            | 179 |
|    | Mixed-effects model                                             | 183 |
|    | Obtaining an overall effect in the presence of subgroups        | 184 |
|    | Summary points                                                  | 186 |
| 20 | META-REGRESSION                                                 | 187 |
|    | Introduction                                                    | 187 |
|    | Fixed-effect model                                              | 188 |
|    | Fixed or random effects for unexplained heterogeneity           | 193 |
|    | Random-effects model                                            | 196 |
|    | Summary points                                                  | 203 |
| 21 | NOTES ON SUBGROUP ANALYSES AND META-REGRESSION                  | 205 |
|    | Introduction                                                    | 205 |
|    | Computational model                                             | 205 |
|    | Multiple comparisons                                            | 208 |
|    | Software                                                        | 209 |
|    | Analyses of subgroups and regression analyses are observational | 209 |

|     | Contents                                                                      | ix         |
|-----|-------------------------------------------------------------------------------|------------|
|     | Statistical power for subgroup analyses and meta-regression<br>Summary points | 210<br>211 |
| PA  | RT 5: COMPLEX DATA STRUCTURES                                                 |            |
| 22  | OVERVIEW                                                                      | 215        |
| 23  | INDEPENDENT SUBGROUPS WITHIN A STUDY                                          | 217        |
|     | Introduction                                                                  | 217        |
|     | Combining across subgroups                                                    | 218        |
|     | Comparing subgroups                                                           | 222        |
|     | Summary points                                                                | 223        |
| 24  | MULTIPLE OUTCOMES OR TIME-POINTS WITHIN A STUDY                               | 225        |
|     | Introduction                                                                  | 225        |
|     | Combining across outcomes or time-points                                      | 226        |
|     | Comparing outcomes or time-points within a study                              | 233        |
|     | Summary points                                                                | 238        |
| 25  | MULTIPLE COMPARISONS WITHIN A STUDY                                           | 239        |
|     | Introduction                                                                  | 239        |
|     | Combining across multiple comparisons within a study                          | 239        |
|     | Differences between treatments                                                | 240        |
|     | Summary points                                                                | 241        |
| 26  | NOTES ON COMPLEX DATA STRUCTURES                                              | 243        |
|     | Introduction                                                                  | 243        |
|     | Summary effect                                                                | 243        |
|     | Differences in effect                                                         | 244        |
| DAI | RT 6: OTHER ISSUES                                                            |            |
| 27  | OVERVIEW                                                                      | 249        |
| 21  |                                                                               |            |
| 28  | VOTE COUNTING – A NEW NAME FOR AN OLD PROBLEM                                 | 251        |
|     | Introduction                                                                  | 251        |
|     | Why vote counting is wrong                                                    | 252        |
|     | Vote counting is a pervasive problem                                          | 253<br>255 |
|     | Summary points                                                                | 255        |
| 29  | POWER ANALYSIS FOR META-ANALYSIS                                              | 257        |
|     | Introduction                                                                  | 257        |
|     | A conceptual approach                                                         | 257        |
|     | In context                                                                    | 261        |
|     | When to use power analysis                                                    | 262        |

|     | Planning for precision rather than for power           | 263 |
|-----|--------------------------------------------------------|-----|
|     | Power analysis in primary studies                      | 263 |
|     | Power analysis for meta-analysis                       | 267 |
|     | Power analysis for a test of homogeneity               | 272 |
|     | Summary points                                         | 275 |
| 30  | PUBLICATION BIAS                                       | 277 |
|     | Introduction                                           | 277 |
|     | The problem of missing studies                         | 278 |
|     | Methods for addressing bias                            | 280 |
|     | Illustrative example                                   | 281 |
|     | The model                                              | 281 |
|     | Getting a sense of the data                            | 281 |
|     | Is there evidence of any bias?                         | 283 |
|     | Is the entire effect an artifact of bias?              | 284 |
|     | How much of an impact might the bias have?             | 286 |
|     | Summary of the findings for the illustrative example   | 289 |
|     | Some important caveats                                 | 290 |
|     | Small-study effects                                    | 291 |
|     | Concluding remarks                                     | 291 |
|     | Summary points                                         | 291 |
| PAF | RT 7: ISSUES RELATED TO EFFECT SIZE                    |     |
| 31  | OVERVIEW                                               | 295 |
| 32  | EFFECT SIZES RATHER THAN <i>p</i> -VALUES              | 297 |
|     | Introduction                                           | 297 |
|     | Relationship between <i>p</i> -values and effect sizes | 297 |
|     | The distinction is important                           | 299 |
|     | The <i>p</i> -value is often misinterpreted            | 300 |
|     | Narrative reviews vs. meta-analyses                    | 301 |
|     | Summary points                                         | 302 |
| 33  | SIMPSON'S PARADOX                                      | 303 |
|     | Introduction                                           | 303 |
|     | Circumcision and risk of HIV infection                 | 303 |
|     | An example of the paradox                              | 305 |
|     | Summary points                                         | 308 |
| 34  | GENERALITY OF THE BASIC INVERSE-VARIANCE METHOD        | 311 |
|     | Introduction                                           | 311 |
|     | Other effect sizes                                     | 312 |
|     | Other methods for estimating effect sizes              | 315 |
|     | Individual participant data meta-analyses              | 316 |
|     |                                                        |     |

х

|     | Contents                                                                                    | xi         |
|-----|---------------------------------------------------------------------------------------------|------------|
|     | Bayesian approaches<br>Summary points                                                       | 318<br>319 |
| PAF | RT 8: FURTHER METHODS                                                                       |            |
| 35  | OVERVIEW                                                                                    | 323        |
| 36  | META-ANALYSIS METHODS BASED ON DIRECTION AND <i>p</i> -VALUES                               | 325        |
|     | Introduction                                                                                | 325        |
|     | Vote counting                                                                               | 325        |
|     | The sign test                                                                               | 325        |
|     | Combining <i>p</i> -values                                                                  | 326        |
|     | Summary points                                                                              | 330        |
| 37  | FURTHER METHODS FOR DICHOTOMOUS DATA                                                        | 331        |
| 57  | Introduction                                                                                | 331        |
|     | Mantel-Haenszel method                                                                      | 331        |
|     |                                                                                             | 336        |
|     | One-step (Peto) formula for odds ratio<br>Summary points                                    | 330        |
|     | Summary points                                                                              | 559        |
| 38  | PSYCHOMETRIC META-ANALYSIS                                                                  | 341        |
|     | Introduction                                                                                | 341        |
|     | The attenuating effects of artifacts                                                        | 342        |
|     | Meta-analysis methods                                                                       | 344        |
|     | Example of psychometric meta-analysis                                                       | 346        |
|     | Comparison of artifact correction with meta-regression                                      | 348        |
|     | Sources of information about artifact values                                                | 349        |
|     | How heterogeneity is assessed                                                               | 349        |
|     | Reporting in psychometric meta-analysis                                                     | 350        |
|     | Concluding remarks                                                                          | 351        |
|     | Summary points                                                                              | 351        |
| PAF | RT 9: META-ANALYSIS IN CONTEXT                                                              |            |
| 39  | OVERVIEW                                                                                    | 355        |
| 40  | WHEN DOES IT MAKE SENSE TO PERFORM A META-ANALYSIS?                                         | 357        |
| 40  | Introduction                                                                                | 357<br>357 |
|     |                                                                                             | 357        |
|     | Are the studies similar enough to combine?<br>Can I combine studies with different designs? | 338<br>359 |
|     | How many studies are enough to carry out a meta-analysis?                                   | 363        |
|     | Summary points                                                                              | 363<br>364 |
|     | Summary points                                                                              | 504        |
| 41  | REPORTING THE RESULTS OF A META-ANALYSIS                                                    | 365        |
|     | Introduction                                                                                | 365        |
|     | The computational model                                                                     | 366        |
|     | 1                                                                                           |            |

| contento |
|----------|
|----------|

|       | Forest plots                                      | 366 |
|-------|---------------------------------------------------|-----|
|       | Sensitivity analysis                              | 368 |
|       | Summary points                                    | 369 |
| 42    | CUMULATIVE META-ANALYSIS                          | 371 |
|       | Introduction                                      | 371 |
|       | Why perform a cumulative meta-analysis?           | 373 |
|       | Summary points                                    | 376 |
| 43    | CRITICISMS OF META-ANALYSIS                       | 377 |
|       | Introduction                                      | 377 |
|       | One number cannot summarize a research field      | 378 |
|       | The file drawer problem invalidates meta-analysis | 378 |
|       | Mixing apples and oranges                         | 379 |
|       | Garbage in, garbage out                           | 380 |
|       | Important studies are ignored                     | 381 |
|       | Meta-analysis can disagree with randomized trials | 381 |
|       | Meta-analyses are performed poorly                | 384 |
|       | Is a narrative review better?                     | 385 |
|       | Concluding remarks                                | 386 |
|       | Summary points                                    | 386 |
| PAF   | T 10: RESOURCES AND SOFTWARE                      |     |
| 44    | SOFTWARE                                          | 391 |
|       | Introduction                                      | 391 |
|       | The software                                      | 392 |
|       | Three examples of meta-analysis software          | 393 |
|       | Comprehensive Meta-Analysis (CMA) 2.0             | 395 |
|       | RevMan 5.0                                        | 398 |
|       | Stata macros with Stata 10.0                      | 400 |
|       | Summary points                                    | 403 |
| 45    | BOOKS, WEB SITES AND PROFESSIONAL ORGANIZATIONS   | 405 |
|       | Books on systematic review methods                | 405 |
|       | Books on meta-analysis                            | 405 |
|       | Web sites                                         | 406 |
| RE    | FERENCES                                          | 409 |
|       |                                                   |     |
| INDEX |                                                   | 415 |

### List of Tables

| Table 3.1   | Roadmap of formulas in subsequent chapters                  | 19  |
|-------------|-------------------------------------------------------------|-----|
| Table 5.1   | Nomenclature for $2 \times 2$ table of outcome by treatment | 33  |
| Table 5.2   | Fictional data for a $2 \times 2$ table                     | 33  |
| Table 8.1   | Impact of sample size on variance                           | 52  |
| Table 8.2   | Impact of study design on variance                          | 54  |
| Table 14.1  | Dataset 1 – Part A (basic data)                             | 88  |
| Table 14.2  | Dataset 1 – Part B (fixed-effect computations)              | 88  |
| Table 14.3  | Dataset 1 – Part C (random-effects computations)            | 88  |
| Table 14.4  | Dataset 2 – Part A (basic data)                             | 93  |
| Table 14.5  | Dataset 2 – Part B (fixed-effect computations)              | 93  |
| Table 14.6  | Dataset 2 – Part C (random-effects computations)            | 93  |
| Table 14.7  | Dataset 3 – Part A (basic data)                             | 98  |
| Table 14.8  | Dataset 3 – Part B (fixed-effect computations)              | 98  |
| Table 14.9  | Dataset 3 – Part C (random-effects computations)            | 98  |
| Table 16.1  | Factors affecting measures of dispersion                    | 119 |
| Table 18.1  | Dataset 1 – Part D (intermediate computations)              | 136 |
| Table 18.2  | Dataset 1 – Part E (variance computations)                  | 136 |
| Table 18.3  | Dataset 2 – Part D (intermediate computations)              | 140 |
| Table 18.4  | Dataset 2 – Part E (variance computations)                  | 140 |
| Table 18.5  | Dataset 3 – Part D (intermediate computations)              | 144 |
| Table 18.6  | Dataset 3 – Part E (variance computations)                  | 144 |
| Table 19.1  | Fixed effect model – computations                           | 152 |
| Table 19.2  | Fixed-effect model – summary statistics                     | 155 |
| Table 19.3  | Fixed-effect model – ANOVA table                            | 158 |
| Table 19.4  | Fixed-effect model – subgroups as studies                   | 159 |
| Table 19.5  | Random-effects model (separate estimates of $\tau^2$ ) –    |     |
|             | computations                                                | 165 |
| Table 19.6  | Random-effects model (separate estimates of $\tau^2$ ) –    |     |
|             | summary statistics                                          | 167 |
| Table 19.7  | Random-effects model (separate estimates of $\tau^2$ ) –    |     |
|             | ANOVA table                                                 | 169 |
| Table 19.8  | Random-effects model (separate estimates of $\tau^2$ ) –    |     |
|             | subgroups as studies                                        | 171 |
| Table 19.9  | Statistics for computing a pooled estimate of $\tau^2$      | 173 |
| Table 19.10 | Random-effects model (pooled estimate of $\tau^2$ ) –       |     |
|             | computations                                                | 173 |

| Table 19.11              | Random-effects model (pooled estimate of $\tau^2$ ) – summary statistics   | 175   |
|--------------------------|----------------------------------------------------------------------------|-------|
| Table 19.12              | Random-effects model (pooled estimate of $\tau^2$ ) – ANOVA table          | 178   |
| Table 19.13              | Random-effects model (pooled estimate of $\tau^2$ ) – subgroups as studies | 170   |
| Table 20.1               | The BCG dataset                                                            | 190   |
| Table 20.1<br>Table 20.2 | Fixed-effect model – Regression results for BCG                            | 190   |
| Table 20.2               | Fixed-effect model – ANOVA table for BCG regression                        | 191   |
| Table 20.4               | Random-effects model – regression results for BCG                          | 197   |
| Table 20.5               | Random-effects model – test of the model                                   | 198   |
| Table 20.6               | Random-effects model – comparison of model (latitude)                      | - / 0 |
|                          | versus the null model                                                      | 202   |
| Table 23.1               | Independent subgroups – five fictional studies                             | 218   |
| Table 23.2               | Independent subgroups – summary effect                                     | 219   |
| Table 23.3               | Independent subgroups – synthetic effect for study 1                       | 220   |
| Table 23.4               | Independent subgroups – summary effect across studies                      | 220   |
| Table 24.1               | Multiple outcomes – five fictional studies                                 | 226   |
| Table 24.2               | Creating a synthetic variable as the mean of two outcomes                  | 227   |
| Table 24.3               | Multiple outcomes – summary effect                                         | 230   |
| Table 24.4               | Multiple outcomes - Impact of correlation on variance of                   |       |
|                          | summary effect                                                             | 231   |
| Table 24.5               | Creating a synthetic variable as the difference between two                |       |
|                          | outcomes                                                                   | 233   |
| Table 24.6               | Multiple outcomes – difference between outcomes                            | 235   |
| Table 24.7               | Multiple outcomes - Impact of correlation on the variance of               |       |
|                          | difference                                                                 | 237   |
| Table 33.1               | HIV as function of circumcision (by subgroup)                              | 304   |
| Table 33.2               | HIV as function of circumcision – by study                                 | 305   |
| Table 33.3               | HIV as a function of circumcision – full population                        | 306   |
| Table 33.4               | HIV as a function of circumcision – by risk group                          | 306   |
| Table 33.5               | HIV as a function of circumcision/risk group – full                        |       |
|                          | population                                                                 | 307   |
| Table 34.1               | Simple example of a genetic association study                              | 314   |
| Table 36.1               | Streptokinase data – calculations for meta-analyses of                     |       |
|                          | <i>p</i> -values                                                           | 329   |
| Table 37.1               | Nomenclature for $2 \times 2$ table of events by treatment                 | 331   |
| Table 37.2               | Mantel-Haenszel – odds ratio                                               | 333   |
| Table 37.3               | Mantel-Haenszel – variance of summary effect                               | 334   |
| Table 37.4               | One-step – odds ratio and variance                                         | 338   |
| Table 38.1               | Fictional data for psychometric meta-analysis                              | 346   |
| Table 38.2               | Observed (attenuated) correlations                                         | 346   |
| Table 38.3               | Unattenuated correlations                                                  | 347   |

# List of Figures

| Figure 1.1  | High-dose versus standard-dose of statins (adapted        |     |
|-------------|-----------------------------------------------------------|-----|
|             | from Cannon et al., 2006)                                 | 4   |
| Figure 2.1  | Impact of streptokinase on mortality (adapted from Lau    |     |
|             | <i>et al.</i> , 1992)                                     | 10  |
| Figure 4.1  | Response ratios are analyzed in log units                 | 31  |
| Figure 5.1  | Risk ratios are analyzed in log units                     | 34  |
| Figure 5.2  | Odds ratios are analyzed in log units                     | 36  |
| Figure 6.1  | Correlations are analyzed in Fisher's z units             | 42  |
| Figure 7.1  | Converting among effect sizes                             | 46  |
| Figure 8.1  | Impact of sample size on variance                         | 53  |
| Figure 8.2  | Impact of study design on variance                        | 54  |
| Figure 10.1 | Symbols for true and observed effects                     | 62  |
| Figure 11.1 | Fixed-effect model – true effects                         | 64  |
| Figure 11.2 | Fixed-effect model – true effects and sampling error      | 64  |
| Figure 11.3 | Fixed-effect model – distribution of sampling error       | 65  |
| Figure 12.1 | Random-effects model – distribution of true effects       | 70  |
| Figure 12.2 | Random-effects model – true effects                       | 70  |
| Figure 12.3 | Random-effects model – true and observed effect in        |     |
|             | one study                                                 | 71  |
| Figure 12.4 | Random-effects model – between-study and within-study     |     |
|             | variance                                                  | 72  |
| Figure 13.1 | Fixed-effect model – forest plot showing relative weights | 78  |
| Figure 13.2 | Random-effects model – forest plot showing relative       |     |
|             | weights                                                   | 78  |
| Figure 13.3 | Very large studies under fixed-effect model               | 80  |
| Figure 13.4 | Very large studies under random-effects model             | 80  |
| Figure 14.1 | Forest plot of Dataset 1 – fixed-effect weights           | 89  |
| Figure 14.2 | Forest plot of Dataset 1 – random-effects weights         | 89  |
| Figure 14.3 | Forest plot of Dataset 2 – fixed-effect weights           | 94  |
| Figure 14.4 | Forest plot of Dataset 2 – random-effects weights         | 94  |
| Figure 14.5 | Forest plot of Dataset 3 – fixed-effect weights           | 99  |
| Figure 14.6 | Forest plot of Dataset 3 – random-effects weights         | 99  |
| Figure 16.1 | Dispersion across studies relative to error within        |     |
|             | studies                                                   | 108 |
| Figure 16.2 | Q in relation to $df$ as measure of dispersion            | 110 |

| Figure 16.3  | Flowchart showing how $T^2$ and $I^2$ are derived                                        |     |
|--------------|------------------------------------------------------------------------------------------|-----|
|              | from $Q$ and $df$                                                                        | 111 |
| Figure 16.4  | Impact of $Q$ and number of studies on the $p$ -value                                    | 113 |
| Figure 16.5  | Impact of excess dispersion and absolute dispersion on $T^2$                             | 115 |
| Figure 16.6  | Impact of excess and absolute dispersion on $T$                                          | 116 |
| Figure 16.7  | Impact of excess dispersion on $I^2$                                                     | 118 |
| Figure 16.8  | Factors affecting $T^2$ but not $I^2$                                                    | 120 |
| Figure 16.9  | Factors affecting $I^2$ but not $T^2$                                                    | 121 |
| Figure 17.1  | Prediction interval based on population parameters $\mu$ and $\tau^2$                    | 130 |
| Figure 17.2  | Prediction interval based on sample estimates $M^*$ and $T^2$                            | 130 |
| Figure 17.3  | Simultaneous display of confidence interval and prediction interval                      | 131 |
| Figure 17.4  | Impact of number of studies on confidence interval and prediction interval               | 132 |
| Figure 18.1  | Forest plot of Dataset 1 – random-effects weights with prediction interval               | 136 |
| Figure 18.2  | Forest plot of Dataset 2 – random-effects weights with prediction interval               | 140 |
| Figure 18.3  | Forest plot of Dataset 3 – random-effects weights with prediction interval               | 144 |
| Figure 19.1  | Fixed-effect model – studies and subgroup effects                                        | 151 |
| Figure 19.2  | Fixed-effect – subgroup effects                                                          | 155 |
| Figure 19.3  | Fixed-effect model – treating subgroups as studies                                       | 159 |
| Figure 19.4  | Flowchart for selecting a computational model                                            | 163 |
| Figure 19.5  | Random-effects model (separate estimates of $\tau^2$ ) – studies<br>and subgroup effects | 164 |
| Figure 19.6  | Random-effects model (separate estimates of $\tau^2$ ) – subgroup ffects                 | 167 |
| Figure 19.7  | Random-effects model (separate estimates of $\tau^2$ ) – treating subgroups as studies   | 170 |
| Figure 19.8  | Random-effects model (pooled estimate of $\tau^2$ ) – studies<br>and subgroup effects    | 172 |
| Figure 19.9  | Random-effects model (pooled estimate of $\tau^2$ ) – subgroup effects                   | 176 |
| Figure 19.10 | Random-effects model (pooled estimate of $\tau^2$ ) – treating subgroups as studies      | 179 |
| Figure 19.11 | A primary study showing subjects within groups                                           | 180 |
| Figure 19.12 | Random-effects model – variance within and between subgroups                             | 182 |
| Figure 19.13 | Proportion of variance explained by subgroup membership                                  | 182 |
| Figure 20.1  | Fixed-effect model – forest plot for the BCG data                                        | 182 |
| Figure 20.2  | Fixed-effect model – regression of log risk ratio on latitude                            | 193 |
| 0            |                                                                                          |     |

xvi

| Figure 20.3 | Fixed-effect model – population effects as function of                 |     |
|-------------|------------------------------------------------------------------------|-----|
|             | covariate                                                              | 194 |
| Figure 20.4 | Random-effects model – population effects as a function of             |     |
|             | covariate                                                              | 194 |
| Figure 20.5 | Random-effects model - forest plot for the BCG data                    | 197 |
| Figure 20.6 | Random-effects model – regression of log risk ratio on                 |     |
|             | latitude                                                               | 199 |
| Figure 20.7 | Between-studies variance $(T^2)$ with no covariate                     | 201 |
| Figure 20.8 | Between-studies variance $(T^2)$ with covariate                        | 201 |
| Figure 20.9 | Proportion of variance explained by latitude                           | 202 |
| Figure 23.1 | Creating a synthetic variable from independent subgroups               | 219 |
| Figure 28.1 | The <i>p</i> -value for each study is $> 0.20$ but the <i>p</i> -value |     |
|             | for the summary effect is $< 0.02$                                     | 252 |
| Figure 29.1 | Power for a primary study as a function of $n$ and $\delta$            | 267 |
| Figure 29.2 | Power for a meta-analysis as a function of number studies              |     |
|             | and $\delta$                                                           | 269 |
| Figure 29.3 | Power for a meta-analysis as a function of number                      |     |
|             | studies and heterogeneity                                              | 272 |
| Figure 30.1 | Passive smoking and lung cancer – forest plot                          | 282 |
| Figure 30.2 | Passive smoking and lung cancer – funnel plot                          | 283 |
| Figure 30.3 | Passive smoking and lung cancer – funnel plot with                     |     |
|             | imputed studies                                                        | 287 |
| Figure 30.4 | Passive smoking and lung cancer – cumulative                           |     |
|             | forest plot                                                            | 288 |
| Figure 32.1 | Estimating the effect size versus testing the null                     |     |
|             | hypothesis                                                             | 298 |
| Figure 32.2 | The <i>p</i> -value is a poor surrogate for effect size                | 300 |
| Figure 32.3 | Studies where p -values differ but effect size is the same             | 300 |
| Figure 32.4 | Studies where <i>p</i> -values are the same but effect sizes           |     |
|             | differ                                                                 | 301 |
| Figure 32.5 | Studies where the more significant $p$ -value corresponds              |     |
|             | to weaker effect size                                                  | 301 |
| Figure 33.1 | HIV as function of circumcision – by study                             | 304 |
| Figure 33.2 | HIV as function of circumcision – in three sets of studies             | 308 |
| Figure 36.1 | Effect size in four fictional studies                                  | 328 |
| Figure 41.1 | Forest plot using lines to represent the effect size                   | 367 |
| Figure 41.2 | Forest plot using boxes to represent the effect size and               |     |
|             | relative weight                                                        | 367 |
| Figure 42.1 | Impact of streptokinase on mortality – forest plot                     | 372 |
| Figure 42.2 | Impact of streptokinase on mortality – cumulative                      |     |
|             | forest plot                                                            | 373 |
| Figure 43.1 | Forest plot of five fictional studies and a new trial                  |     |
|             | (consistent effects)                                                   | 382 |

| Figure 43.2 | Forest plot of five fictional studies and a new trial    |     |  |
|-------------|----------------------------------------------------------|-----|--|
|             | (heterogeneous effects)                                  | 383 |  |
| Figure 44.1 | CMA – data entry screen for $2 \times 2$ tables          | 395 |  |
| Figure 44.2 | CMA – analysis screen                                    | 396 |  |
| Figure 44.3 | CMA – high resolution forest plot                        | 397 |  |
| Figure 44.4 | RevMan – data entry screen for $2 \times 2$ tables       | 398 |  |
| Figure 44.5 | RevMan – analysis screen                                 | 399 |  |
| Figure 44.6 | Stata macros – data entry screen for $2 \times 2$ tables | 401 |  |
| Figure 44.7 | Stata macros – analysis screen                           | 401 |  |
| Figure 44.8 | Stata macros – high resolution forest plot               | 402 |  |
|             |                                                          |     |  |

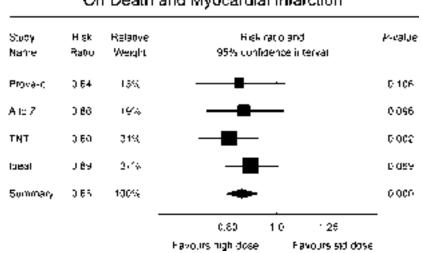
### How a Meta-Analysis Works

Introduction Individual studies The summary effect Heterogeneity of effect sizes

#### INTRODUCTION

Figure 1.1 illustrates a meta-analysis that shows the impact of high dose versus standard dose of statins in preventing death and myocardial infarction (MI). This analysis is adapted from one reported by Cannon *et al.* and published in the *Journal of the American College of Cardiology* (2006).

Our goal in presenting this here is to introduce the various elements in a meta-analysis (the effect size for each study, the weight assigned to each effect size, the estimate of the summary effect, and so on) and show where each fits into the larger scheme. In the chapters that follow, each of these elements will be explored in detail.


#### INDIVIDUAL STUDIES

The first four rows on this plot represent the four studies. For each, the study name is shown at left, followed by the effect size, the relative weight assigned to the study for computing the summary effect, and the *p*-value. The effect size and weight are also shown schematically.

#### Effect size

The effect size, a value which reflects the magnitude of the treatment effect or (more generally) the strength of a relationship between two variables, is the unit of currency in a meta-analysis. We compute the effect size for each study, and then

Introduction to Meta-Analysis. Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-05724-7



#### Impact of Statin Dose On Death and Myocardial Infarction

Figure 1.1 High-dose versus standard-dose of statins (adapted from Cannon et al., 2006).

work with the effect sizes to assess the consistency of the effect across studies and to compute a summary effect.

The effect size could represent the impact of an intervention, such as the impact of medical treatment on risk of infection, the impact of a teaching method on test scores, or the impact of a new protocol on the number of salmon successfully returning upstream. The effect size is not limited to the impact of interventions, but could represent *any relationship* between two variables, such as the difference in test scores for males versus females, the difference in cancer rates for persons exposed or not exposed to second-hand smoke, or the difference in cardiac events for persons with two distinct personality types. In fact, what we generally call an *effect size* could refer simply to the estimate of a single value, such as the prevalence of Lyme disease.

In this example the effect size is the risk ratio. A risk ratio of 1.0 would mean that the risk of death or MI was the same in both groups, while a risk ratio less than 1.0 would mean that the risk was lower in the high-dose group, and a risk ratio greater than 1.0 would mean that the risk was lower in the standard-dose group.

The effect size for each study is represented by a square, with the location of the square representing both the direction and magnitude of the effect. Here, the effect size for each study falls to the left of center (indicating a benefit for the high-dose group). The effect is strongest (most distant from the center) in the *TNT* study and weakest in the *Ideal* study.

Note. For measures of effect size based on ratios (as in this example) a ratio of 1.0 represents no difference between groups. For measures of effect based on differences (such as mean difference), a difference of 0.0 represents no difference between groups.

#### Precision

In the schematic, the effect size for each study is bounded by a confidence interval, reflecting the precision with which the effect size has been estimated in that study. The confidence interval for the last study (*Ideal*) is noticeably narrower than that for the first study (*Prove-it*), reflecting the fact that the *Ideal* study has greater precision. The meaning of precision and the factors that affect precision are discussed in Chapter 8.

#### Study weights

The solid squares that are used to depict each of the studies vary in size, with the size of each square reflecting the weight that is assigned to the corresponding study when we compute the summary effect. The *TNT* and *Ideal* studies are assigned relatively high weights, while somewhat less weight is assigned to the *A to Z* study and still less to the *Prove-it* study.

As one would expect, there is a relationship between a study's precision and that study's weight in the analysis. Studies with relatively good precision (*TNT* and *Ideal*) are assigned more weight while studies with relatively poor precision (*Proveit*) are assigned less weight. Since precision is driven primarily by sample size, we can think of the studies as being weighted by sample size.

However, while precision is one of the elements used to assign weights, there are often other elements as well. In Part 3 we discuss different assumptions that one can make about the distribution of effect sizes across studies, and how these affect the weight assigned to each study.

#### p-values

For each study we show the *p*-value for a test of the null. There is a necessary correspondence between the *p*-value and the confidence interval, such that the *p*-value will fall under 0.05 if and only if the 95% confidence interval does not include the null value. Therefore, by scanning the confidence intervals we can easily identify the statistically significant studies. The role of *p*-values in the analysis, as well as the relationship between *p*-values and effect size, is discussed in Chapter 32.

In this example, for three of the four studies the confidence interval crosses the null, and the *p*-value is greater than 0.05. In one (the *TNT* study) the confidence interval does not cross the null, and the *p*-value falls under 0.05.

#### THE SUMMARY EFFECT

One goal of the synthesis is usually to compute a summary effect. Typically we report the effect size itself, as well as a measure of precision and a *p*-value.